Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF SLIP INFLUENCE ON ELECTRIC CONDUCTING VISCOELASTIC FLUID PAST AN ISOTHERMAL CYLINDER

    CH. Amanullaa,b,*, N. Nagendrab , M. Suryanarayana Reddyc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-13, 2018, DOI:10.5098/hmt.10.10

    Abstract The present study deals with the computational analysis on an electrically conducting magneto viscoelastic fluid over a circular cylinder. Prescribed partial slip effects are also taken into account. The governing physical problem is tackled numerically by using the highly efficient and reliable Keller box algorithm. Impact of sundry physical parameters on physical quantities of interest are evaluated. The influence of Williamson viscoelastic fluid parameter, magnetic body force parameter, Thermal and velocity (hydrodynamic) slip parameters, stream wise variable and Prandtl number on thermos-fluid characteristics are studied graphically. The model is relevant to the simulation of magnetic More >

  • Open Access

    ARTICLE

    MHD FLOW IN A CIRCULAR HORIZONTAL PIPE UNDER HEAT SOURCE/SINK WITH SUCTION/INJECTION ON WALL

    G. Nagarajua,∗ , Mahesh Garvandhab, J.V. Ramana Murthyc

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.6

    Abstract This paper analyzes a hypothesis of the 2−dimensional thermal transport behavior of Newtonian axisymmetric, viscous heating flow in a horizontal pipe. The flow is subjected to an externally applied uniform suction across the pipe wall in the polar direction, a constant magnetic field perpendicular to the wall and a uniform heat source/sink on the surface of the cylinder. The thermal boundary condition is imposed as a uniform heat flux. The Velocity fields are expressed in terms of stream function and the solution is obtained using the homotopy analysis method (HAM). Graphs are designed to analyze More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION OF THE EFFECTS OF HEAT AND MASS TRANSFER ON UNSTEADY MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE

    D. Santhi Kumaria,*, Venkata Subrahmanyam Sajjaa, P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-10, 2021, DOI:10.5098/hmt.16.24

    Abstract This study attempts to explore a qualitative analysis of the effects of Soret on an unsteady magnetohydrodynamics free convection flow of a chemically reacting incompressible fluid past an infinite vertical plate embedded in a porous medium taking the source of heat and thermal radiation into account as well as viscous dissipation. The central equations are scrupulously converted into sets of coupled nonlinear partial differential equations for providing logical solutions. The method of Galerkin finite element is used considering appropriate boundary conditions for diverse physical metrics and then numerically analyzed employing MATLAB. A significant change in More >

  • Open Access

    ARTICLE

    THERMAL-HYDRAULIC ANALYSIS OF FERROFLUID LAMINAR FLOW IN TUBE UNDER NON-UNIFORM MAGNETIC FIELD CREATED BY A PERIODIC CURRENT-CARRYING WIRE

    Abderraouf Dahmania,∗ , José Muñoz-Cámarab, Juan Pedro Solanob, Samir Laouedja

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-8, 2022, DOI:10.5098/hmt.18.42

    Abstract In this paper, a steady and laminar flow of ferrofluid (Fe3O4/Water) in a uniformly heated tube under the effect of non-uniform magnetic field arranged periodically along the tube is numerically analyzed using the finite volume method. The analysis sheds light on the flow pattern, Nusselt number, friction factor and the Performance Evaluation Criterion, at laminar flow regime (102Re ≤ 103 ) and for various magnetic numbers (Mn = 0, 2.83 · 104 , 6.37 · 104 and 1.13 · 105 ). The obtained results show that the magnetic field generated by periodic arrangement of the wire pitches, More >

  • Open Access

    ARTICLE

    CASSON FLUID FLOW DUE TO STRETCHING SHEET WITH MAGNETIC EFFECT AND VARIABLE THERMAL CONDUCTIVITY

    M. Y. Dhangea,*, G. C. Sankada, Ishwar Maharudrappab

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.36

    Abstract The present paper investigates the impacts of heat transfer and magnetic field on the boundary layer flow of Casson fluid over a linearly stretching sheet. The researchers have introduced analytical and numerical solutions for the momentum and energy equations by transforming the equations into the system of ordinary differential equations with the aid of the similarity transformations technique. The velocity and temperature profiles for pertinent constraints like Casson fluid constraint, Chandrasekhar number, Prandtl number, and thermal conductivity are presented through graphs. The influence of the wall shear stress and the Prandtl number increases while the… More >

  • Open Access

    ARTICLE

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

    Binghui Cui1,*, Liaojun Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 357-376, 2023, DOI:10.32604/cmes.2022.022309

    Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of its propagation process can provide solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary condition considering friction is proposed and integrated into the SPH method, and its accuracy is verified. Moreover, the… More > Graphic Abstract

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

  • Open Access

    ARTICLE

    Shape Effect of Nanoparticles on Nanofluid Flow Containing Gyrotactic Microorganisms

    Umair Rashid1, Azhar Iqbal2,*, Abdullah M. Alsharif3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 483-494, 2023, DOI:10.32604/cmes.2022.020033

    Abstract In this paper, we discussed the effect of nanoparticles shape on bioconvection nanofluid flow over the vertical cone in a permeable medium. The nanofluid contains water, Al2O3 nanoparticles with sphere (spherical) and lamina (non-spherical) shapes and motile microorganisms. The phenomena of heat absorption/generation, Joule heating and thermal radiation with chemical reactions have been incorporated. The similarity transformations technique is used to transform a governing system of partial differential equations into ordinary differential equations. The numerical bvp4c MATLAB program is used to find the solution of ordinary differential equations. The interesting aspects of pertinent parameters on mass More >

  • Open Access

    ARTICLE

    Simulation of Oil-Water Flow in Shale Oil Reservoirs Based on Smooth Particle Hydrodynamics

    Qin Qian1, Mingjing Lu1,2,*, Feng Wang3, Aishan Li1, Liaoyuan Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1089-1097, 2022, DOI:10.32604/fdmp.2022.019837

    Abstract A Smooth Particle Hydrodynamics (SPH) method is employed to simulate the two-phase flow of oil and water in a reservoir. It is shown that, in comparison to the classical finite difference approach, this method is more stable and effective at capturing the complex evolution of this category of two-phase flows. The influence of several smooth functions is explored and it is concluded that the Gaussian function is the best one. After 200 days, the block water cutoff for the Gaussian function is 0.3, whereas the other functions have a block water cutoff of 0.8. The More >

  • Open Access

    ARTICLE

    Hydrodynamics and Heat Transfer Analysis of Airflow in a Sinusoidally Curved Channel

    Abid. A. Memon1, M. Asif Memon1, Kaleemullah Bhatti1, Thanin Sitthiwirattham2,*, Nichaphat Patanarapeelert3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4835-4853, 2022, DOI:10.32604/cmc.2022.023912

    Abstract For heat transfer enhancement in heat exchangers, different types of channels are often tested. The performance of heat exchangers can be made better by considering geometry composed of sinusoidally curved walls. This research studies the modeling and simulation of airflow through a units long sinusoidally curved wavy channel. For the purpose, two-dimensional Navier Stokes equations along with heat equations are under consideration. To simulate the fluid flow problem, the finite element-based software COMSOL Multiphysics is used. The parametric study for Reynolds number from to and the period of vibration P from to are observed. The surface… More >

  • Open Access

    ARTICLE

    Effect of Flow Field Geometry on Hydrodynamics of Flow in Redox Flow Battery

    M. Narendra Kumar1,*, S. Manoj Kumar2, G. C. Vijayakumar1, K. Kadirgama3,4, M. Samykano5, Krishna Venkatesh1, H. B. Murlidhara1

    Energy Engineering, Vol.119, No.1, pp. 201-217, 2022, DOI:10.32604/EE.2022.016597

    Abstract This study computationally investigates the hydrodynamics of different serpentine flow field designs for redox flow batteries, which considers the Poiseuille flow in the flow channel and the Darcy flow porous substrate. Computational Fluid Dynamics (CFD) results of the in-house developed code based on Finite Volume Method (FVM) for conventional serpentine flow field (CSFF) agreed well with those obtained via experiment. The deviation for pressure drop was less than 5.1% for all the flow rates, thus proving the present CFD analysis’s validity on the modified variation of serpentine flow fields. Modified serpentine flow field-2 (MSFF2) design provided More >

Displaying 21-30 on page 3 of 64. Per Page