Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Enhancing Fire Detection with YOLO Models: A Bayesian Hyperparameter Tuning Approach

    Van-Ha Hoang1, Jong Weon Lee1, Chun-Su Park2,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4097-4116, 2025, DOI:10.32604/cmc.2025.063468 - 19 May 2025

    Abstract Fire can cause significant damage to the environment, economy, and human lives. If fire can be detected early, the damage can be minimized. Advances in technology, particularly in computer vision powered by deep learning, have enabled automated fire detection in images and videos. Several deep learning models have been developed for object detection, including applications in fire and smoke detection. This study focuses on optimizing the training hyperparameters of YOLOv8 and YOLOv10 models using Bayesian Tuning (BT). Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance. Specifically, the proposed approach… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate

    Suganya Athisayamani1, A. Robert Singh2, Gyanendra Prasad Joshi3, Woong Cho4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 155-183, 2025, DOI:10.32604/cmes.2024.056129 - 17 December 2024

    Abstract In radiology, magnetic resonance imaging (MRI) is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures. MRI is particularly effective for detecting soft tissue anomalies. Traditionally, radiologists manually interpret these images, which can be labor-intensive and time-consuming due to the vast amount of data. To address this challenge, machine learning, and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans. This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods. There are three… More >

  • Open Access

    ARTICLE

    Modeling and Predictive Analytics of Breast Cancer Using Ensemble Learning Techniques: An Explainable Artificial Intelligence Approach

    Avi Deb Raha1, Fatema Jannat Dihan2, Mrityunjoy Gain1, Saydul Akbar Murad3, Apurba Adhikary2, Md. Bipul Hossain2, Md. Mehedi Hassan1, Taher Al-Shehari4, Nasser A. Alsadhan5, Mohammed Kadrie4, Anupam Kumar Bairagi1,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4033-4048, 2024, DOI:10.32604/cmc.2024.057415 - 19 December 2024

    Abstract Breast cancer stands as one of the world’s most perilous and formidable diseases, having recently surpassed lung cancer as the most prevalent cancer type. This disease arises when cells in the breast undergo unregulated proliferation, resulting in the formation of a tumor that has the capacity to invade surrounding tissues. It is not confined to a specific gender; both men and women can be diagnosed with breast cancer, although it is more frequently observed in women. Early detection is pivotal in mitigating its mortality rate. The key to curbing its mortality lies in early detection.… More >

  • Open Access

    ARTICLE

    An Optimized Approach to Deep Learning for Botnet Detection and Classification for Cybersecurity in Internet of Things Environment

    Abdulrahman Alzahrani*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2331-2349, 2024, DOI:10.32604/cmc.2024.052804 - 15 August 2024

    Abstract The recent development of the Internet of Things (IoTs) resulted in the growth of IoT-based DDoS attacks. The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices. Anomaly detection models evaluate transmission patterns, network traffic, and device behaviour to detect deviations from usual activities. Machine learning (ML) techniques detect patterns signalling botnet activity, namely sudden traffic increase, unusual command and control patterns, or irregular device behaviour. In addition, intrusion detection systems (IDSs) and signature-based techniques are applied to recognize known malware signatures related to botnets.… More >

  • Open Access

    ARTICLE

    Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering

    Zhenyu Qian1, Yizhang Jiang1, Zhou Hong1, Lijun Huang2, Fengda Li3, KhinWee Lai6, Kaijian Xia4,5,6,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4741-4762, 2024, DOI:10.32604/cmc.2024.050920 - 20 June 2024

    Abstract In this paper, we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering (MAS-DSC) algorithm, aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data, particularly in the field of medical imaging. Traditional deep subspace clustering algorithms, which are mostly unsupervised, are limited in their ability to effectively utilize the inherent prior knowledge in medical images. Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process, thereby enhancing the discriminative power of the feature representations. Additionally, the multi-scale feature extraction… More > Graphic Abstract

    Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering

  • Open Access

    ARTICLE

    Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter

    R. Sujatha, K. Nimala*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1669-1686, 2024, DOI:10.32604/cmc.2023.046963 - 27 February 2024

    Abstract Sentence classification is the process of categorizing a sentence based on the context of the sentence. Sentence categorization requires more semantic highlights than other tasks, such as dependence parsing, which requires more syntactic elements. Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence, recognizing the progress and comparing impacts. An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus. The conversational sentences are classified into four categories: information, question, directive, and commission. These classification label sequences are for… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Using Improved Deep Learning Models

    Sumaya S. Sulaiman1,2,*, Ibraheem Nadher3, Sarab M. Hameed2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1049-1069, 2024, DOI:10.32604/cmc.2023.046051 - 30 January 2024

    Abstract Fraud of credit cards is a major issue for financial organizations and individuals. As fraudulent actions become more complex, a demand for better fraud detection systems is rising. Deep learning approaches have shown promise in several fields, including detecting credit card fraud. However, the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters. This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data, thereby improving fraud detection. Three deep learning models: AutoEncoder (AE), Convolution Neural Network… More >

  • Open Access

    ARTICLE

    Abstractive Arabic Text Summarization Using Hyperparameter Tuned Denoising Deep Neural Network

    Ibrahim M. Alwayle1, Hala J. Alshahrani2, Saud S. Alotaibi3, Khaled M. Alalayah1, Amira Sayed A. Aziz4, Khadija M. Alaidarous1, Ibrahim Abdulrab Ahmed5, Manar Ahmed Hamza6,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 153-168, 2023, DOI:10.32604/iasc.2023.034718 - 05 February 2024

    Abstract Abstractive text summarization is crucial to produce summaries of natural language with basic concepts from large text documents. Despite the achievement of English language-related abstractive text summarization models, the models that support Arabic language text summarization are fewer in number. Recent abstractive Arabic summarization models encounter different issues that need to be resolved. Syntax inconsistency is a crucial issue resulting in the low-accuracy summary. A new technique has achieved remarkable outcomes by adding topic awareness in the text summarization process that guides the module by imitating human awareness. The current research article presents Abstractive Arabic… More >

  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970 - 29 November 2023

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual… More >

Displaying 1-10 on page 1 of 37. Per Page