Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access


    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access


    Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology

    Safwan Al-sayed, Xi Wang, Yijiang Peng*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4169-4195, 2024, DOI:10.32604/cmc.2024.048916

    Abstract The mechanical properties and failure mechanism of lightweight aggregate concrete (LWAC) is a hot topic in the engineering field, and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field. In this study, the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete. Through the information extraction and processing of the section image of actual light aggregate concrete specimens, the mesostructural model of light aggregate concrete with real aggregate characteristics is established. The numerical simulation of uniaxial tensile test, uniaxial compression… More >

  • Open Access


    Monocular Distance Estimated Based on PTZ Camera

    Qirui Zhong1, Xiaogang Cheng2,*, Yuxin Song3, Han Wang2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3417-3433, 2024, DOI:10.32604/cmc.2024.049992

    Abstract This paper introduces an intelligent computational approach for extracting salient objects from images and estimating their distance information with PTZ (Pan-Tilt-Zoom) cameras. PTZ cameras have found wide applications in numerous public places, serving various purposes such as public security management, natural disaster monitoring, and crisis alarms, particularly with the rapid development of Artificial Intelligence and global infrastructural projects. In this paper, we combine Gauss optical principles with the PTZ camera’s capabilities of horizontal and pitch rotation, as well as optical zoom, to estimate the distance of the object. We present a novel monocular object distance… More >

  • Open Access


    Improving the Segmentation of Arabic Handwriting Using Ligature Detection Technique

    Husam Ahmad Al Hamad*, Mohammad Shehab*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2015-2034, 2024, DOI:10.32604/cmc.2024.048527

    Abstract Recognizing handwritten characters remains a critical and formidable challenge within the realm of computer vision. Although considerable strides have been made in enhancing English handwritten character recognition through various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexity arises from the diverse array of writing styles among individuals, coupled with the various shapes that a single character can take when positioned differently within document images, rendering the task more perplexing. In this study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locate the local minima of the vertical… More >

  • Open Access


    An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images

    Syed Ayaz Ali Shah1,*, Aamir Shahzad1,*, Musaed Alhussein2, Chuan Meng Goh3, Khursheed Aurangzeb2, Tong Boon Tang4, Muhammad Awais5

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2565-2583, 2024, DOI:10.32604/cmc.2024.047597

    Abstract Diagnosing various diseases such as glaucoma, age-related macular degeneration, cardiovascular conditions, and diabetic retinopathy involves segmenting retinal blood vessels. The task is particularly challenging when dealing with color fundus images due to issues like non-uniform illumination, low contrast, and variations in vessel appearance, especially in the presence of different pathologies. Furthermore, the speed of the retinal vessel segmentation system is of utmost importance. With the surge of now available big data, the speed of the algorithm becomes increasingly important, carrying almost equivalent weightage to the accuracy of the algorithm. To address these challenges, we present… More > Graphic Abstract

    An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images

  • Open Access


    Spinal Vertebral Fracture Detection and Fracture Level Assessment Based on Deep Learning

    Yuhang Wang1,*, Zhiqin He1, Qinmu Wu1, Tingsheng Lu2, Yu Tang1, Maoyun Zhu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1377-1398, 2024, DOI:10.32604/cmc.2024.047379

    Abstract This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’ diagnostic efficiency. Therefore, a deep-learning-based automated diagnostic system with multi-label segmentation is proposed to recognize the condition of vertebral fractures. The whole spine Computed Tomography (CT) image is segmented into the fracture, normal, and background using U-Net, and the fracture degree of each vertebra is evaluated (Genant semi-qualitative evaluation). The main work of this paper includes: First, based on the spatial configuration network (SCN) structure, U-Net is used instead of the SCN feature extraction network. The attention mechanism and… More >

  • Open Access


    Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules

    Yongcan Zhu1,2, Jiawen Wang1, Ye Zhang1,2, Long Zhao1, Botao Jiang1, Xinbo Huang1,*

    Energy Engineering, Vol.121, No.4, pp. 895-911, 2024, DOI:10.32604/ee.2023.041002

    Abstract The accumulation of snow and ice on PV modules can have a detrimental impact on power generation, leading to reduced efficiency for prolonged periods. Thus, it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules. To address this issue, the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images. Furthermore, the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules, allowing for the establishment… More >

  • Open Access


    Machine Learning Techniques Using Deep Instinctive Encoder-Based Feature Extraction for Optimized Breast Cancer Detection

    Vaishnawi Priyadarshni1, Sanjay Kumar Sharma1, Mohammad Khalid Imam Rahmani2,*, Baijnath Kaushik3, Rania Almajalid2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2441-2468, 2024, DOI:10.32604/cmc.2024.044963

    Abstract Breast cancer (BC) is one of the leading causes of death among women worldwide, as it has emerged as the most commonly diagnosed malignancy in women. Early detection and effective treatment of BC can help save women’s lives. Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques. This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) data set. The novelty of the proposed framework lies in the integration of More >

  • Open Access


    Adaptive Segmentation for Unconstrained Iris Recognition

    Mustafa AlRifaee1, Sally Almanasra2,*, Adnan Hnaif3, Ahmad Althunibat3, Mohammad Abdallah3, Thamer Alrawashdeh3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1591-1609, 2024, DOI:10.32604/cmc.2023.043520

    Abstract In standard iris recognition systems, a cooperative imaging framework is employed that includes a light source with a near-infrared wavelength to reveal iris texture, look-and-stare constraints, and a close distance requirement to the capture device. When these conditions are relaxed, the system’s performance significantly deteriorates due to segmentation and feature extraction problems. Herein, a novel segmentation algorithm is proposed to correctly detect the pupil and limbus boundaries of iris images captured in unconstrained environments. First, the algorithm scans the whole iris image in the Hue Saturation Value (HSV) color space for local maxima to detect… More >

  • Open Access


    AI-Based UAV Swarms for Monitoring and Disease Identification of Brassica Plants Using Machine Learning: A Review

    Zain Anwar Ali1,2,*, Dingnan Deng1, Muhammad Kashif Shaikh3, Raza Hasan4, Muhammad Aamir Khan2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 1-34, 2024, DOI:10.32604/csse.2023.041866

    Abstract Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research studies necessitates a literature review for more progress and contribution in… More >

Displaying 1-10 on page 1 of 118. Per Page