Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    A Perspective-Aware Cyclist Image Generation Method for Perception Development of Autonomous Vehicles

    Beike Yu1, Dafang Wang1,*, Xing Cui2, Bowen Yang1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2687-2702, 2025, DOI:10.32604/cmc.2024.059594 - 17 February 2025

    Abstract Realistic urban scene generation has been extensively studied for the sake of the development of autonomous vehicles. However, the research has primarily focused on the synthesis of vehicles and pedestrians, while the generation of cyclists is rarely presented due to its complexity. This paper proposes a perspective-aware and realistic cyclist generation method via object retrieval. Images, semantic maps, and depth labels of objects are first collected from existing datasets, categorized by class and perspective, and calculated by an algorithm newly designed according to imaging principles. During scene generation, objects with the desired class and perspective… More >

  • Open Access

    ARTICLE

    A Study on Polyp Dataset Expansion Algorithm Based on Improved Pix2Pix

    Ziji Xiao1, Kaibo Yang1, Mingen Zhong1,*, Kang Fan2, Jiawei Tan2, Zhiying Deng1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2665-2686, 2025, DOI:10.32604/cmc.2024.058345 - 17 February 2025

    Abstract The polyp dataset involves the confidentiality of medical records, so it might be difficult to obtain datasets with accurate annotations. This problem can be effectively solved by expanding the polyp data set with algorithms. The traditional polyp dataset expansion scheme usually requires the use of two models or traditional visual methods. These methods are both tedious and difficult to provide new polyp features for training data. Therefore, our research aims to efficiently generate high-quality polyp samples, so as to effectively expand the polyp dataset. In this study, we first added the attention mechanism to the… More >

  • Open Access

    ARTICLE

    Explicitly Color-Inspired Neural Style Transfer Using Patchified AdaIN

    Bumsoo Kim1, Wonseop Shin2, Yonghoon Jung1, Youngsup Park3, Sanghyun Seo1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2143-2164, 2024, DOI:10.32604/cmes.2024.056079 - 31 October 2024

    Abstract Arbitrary style transfer aims to perceptually reflect the style of a reference image in artistic creations with visual aesthetics. Traditional style transfer models, particularly those using adaptive instance normalization (AdaIN) layer, rely on global statistics, which often fail to capture the spatially local color distribution, leading to outputs that lack variation despite geometric transformations. To address this, we introduce Patchified AdaIN, a color-inspired style transfer method that applies AdaIN to localized patches, utilizing local statistics to capture the spatial color distribution of the reference image. This approach enables enhanced color awareness in style transfer, adapting… More >

  • Open Access

    ARTICLE

    A Novel Unsupervised MRI Synthetic CT Image Generation Framework with Registration Network

    Liwei Deng1, Henan Sun1, Jing Wang2, Sijuan Huang3, Xin Yang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2271-2287, 2023, DOI:10.32604/cmc.2023.039062 - 29 November 2023

    Abstract In recent years, radiotherapy based only on Magnetic Resonance (MR) images has become a hot spot for radiotherapy planning research in the current medical field. However, functional computed tomography (CT) is still needed for dose calculation in the clinic. Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest, making radiotherapy based only on MR images possible. In this paper, we proposed a novel unsupervised image synthesis framework with registration networks. This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed… More >

  • Open Access

    ARTICLE

    Tight Sandstone Image Augmentation for Image Identification Using Deep Learning

    Dongsheng Li, Chunsheng Li*, Kejia Zhang, Tao Liu, Fang Liu, Jingsong Yin, Mingyue Liao

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1209-1231, 2023, DOI:10.32604/csse.2023.034395 - 26 May 2023

    Abstract Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification, and accurate mineral particle segmentation is the most critical step for intelligent identification. A typical identification model requires many training samples to learn as many distinguishable features as possible. However, limited by the difficulty of data acquisition, the high cost of labeling, and privacy protection, this has led to a sparse sample number and cannot meet the training requirements of deep learning image identification models. In order to increase the number of samples and improve the training effect… More >

  • Open Access

    REVIEW

    A Survey of GAN Based Image Synthesis

    Jiahe Ni*

    Journal of Information Hiding and Privacy Protection, Vol.4, No.2, pp. 79-88, 2022, DOI:10.32604/jihpp.2022.039751 - 17 April 2023

    Abstract Image generation is a hot topic in the academic recently, and has been applied to AI drawing, which can bring Vivid AI paintings without labor costs. In image generation, we represent the image as a random vector, assuming that the images of the natural scene obey an unknown distribution, we hope to estimate its distribution through some observation samples. Especially, with the development of GAN (Generative Adversarial Network), The generator and discriminator improve the model capability through adversarial, the quality of the generated image is also increasing. The image quality generated by the existing GAN More >

Displaying 1-10 on page 1 of 6. Per Page