Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    Lubrication of Asymmetric Rollers Using Roelands Viscosity–Pressure-Temperature Relationship

    Swetha Lanka1, Venkata Subrahmanyam Sajja1,*, Dhaneshwar Prasad2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 385-405, 2023, DOI:10.32604/fhmt.2023.042544

    Abstract An attempt is made to analyse some lubrication characteristics of rigid cylindrical asymmetric rollers under adiabatic and isothermal boundaries with rolling and sliding motion lubricated by a non-Newtonian incompressible Bingham plastic fluid under the behaviour of line contact. Here the lower surface is considered to move quicker than that of the upper surface; and the Roelands viscosity model is considered and assumed to depend upon the fluid pressure and the mean film temperature. The governing equations for fluid flow such as equations of motion with continuity and the momentum energy equation are solved using Runge-Kutta forth order and MATLAB is… More >

  • Open Access

    ARTICLE

    A STUDY OF MAGNETIC EFFECT ON FLOW BETWEEN TWO PLATES WITH SUCTION OR INJECTION WITH SPECIAL REFERENCE TO CASSON FLUID

    V. S. Sampath Kumar, N. P. Pai

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.23

    Abstract The present paper encorporates the effet of magnetic field on the incompressible Casson fluid flow between two parallel infinite rectangular plates approaching towards or away from each other with suction or injection at the porous plates. Using similarity transformations the governing Navier-Stokes equations are reduced to a nonlinear ordinary differential equation. Semi-analytical solution is obtained based on the Homotopy perturbation method. Further, the solution is compared with the classical finite difference method separately. The effect of magnetic field on velocity, skin friction and pressure is analysed on flow between two plates with suction or injection, where two plates moving towards… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ANALYSIS OF MHD CASSON FLUID FLOW BETWEEN TWO POROUS PLATES WITH DIFFERENT PERMEABILITY

    V.S. Sampath Kumar, N.P. Pai , B. Devaki

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-13, 2023, DOI:10.5098/hmt.20.30

    Abstract In the present study, we consider Casson fluid flow between two porous plates with permeability criteria in the presence of heat transfer and magnetic effect. A proper set of similarity transformations simplify the Navier-Stokes equations to non-linear ODEs with boundary conditions. The homotopy perturbation method is an efficient and stable method which is used to get solutions. Further, the results obtained are compared with the solution computed through an effective and efficient finite difference approach. The purpose of this analysis is to study the four different cases arise viz: suction, injection, mixed suction and mixed injection in this problem, along… More >

  • Open Access

    ARTICLE

    THERMAL EFFECTS IN BINGHAM PLASTIC FLUID FILM LUBRICATION OF ASYMMETRIC ROLLERS

    Revathi Gadamsettya,*, Venkata Subrahmanyam Sajjab , P. Sudam Sekharc, Dhaneshwar Prasadd,†

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-7, 2020, DOI:10.5098/hmt.15.18

    Abstract Hydrodynamic lubrication characteristics of asymmetric rollers lubricated by non-Newtonian incompressible Bingham plastic fluid are analyzed in this work. It narrates the qualitative research with the rigid system in which the viscosity of the particular non-Newtonian Bingham plastic substance is considered to become the function of hydrodynamic pressure. The equations considered in this work like equation of motion along with continuity and energy equations are solved numerically using MATLAB after particular analytical steps. Resulting from this particular work, it is identified that there is some notable change in temperatures, pressure, load and traction forces with Newtonian and also non-Newtonian fluids both.… More >

  • Open Access

    ARTICLE

    SQUEEZE FILM LUBRICATION OF ASYMMETRIC ROLLERS BY BINGHAM PLASTIC FLUID

    Revathi Gadamsettya,*,† , Venkata Subrahmanyam Sajjab, P. Sudam Sekharc, Dhaneshwar Prasadd

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.7

    Abstract An attempt has been made to investigate hydrodynamic lubrication characteristics of asymmetric roller bearings lubricated by thin fluid film under the operating behavior of line contact for a heavily loaded rigid system for normal squeezing motion with cavitation points. The lubricant follows non-Newtonian incompressible Bingham plastic fluid model where the fluid viscosity is supposed to vary with hydrodynamic pressure . The equations which govern the fluid flow such as continuity and momentum equation are solved first analytically and later numerically using MATLAB. The numerical results are achieved for the velocity, pressure, load, and traction forces by varying different physical parameters… More >

  • Open Access

    ARTICLE

    ANALYSIS OF MHD FLOW AND HEAT TRANSFER OF LAMINAR FLOW BETWEEN POROUS DISKS

    V. S. Sampath Kumara , N. P. Paia,† , B. Devakia

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.3

    Abstract A study is carried out for the two dimensional laminar flow of conducting fluid in presence of magnetic field. The governing non-linear equations of motion are transformed in to dimensionaless form. A solution is obtained by homotopy perturbation method and it is valid for moderately large Reynolds numbers for injection at the wall. Also an efficient algorithm based finite difference scheme is developed to solve the reduced coupled ordinary differential equations with necessary boundary conditions. The effects of Reynolds number, the magnetic parameter and the pradantle number on flow velocity and tempratare distribution is analysed by both the methods and… More >

  • Open Access

    ARTICLE

    Impact of Artificial Compressibility on the Numerical Solution of Incompressible Nanofluid Flow

    Tohid Adibi1, Shams Forruque Ahmed2,*, Seyed Esmail Razavi3, Omid Adibi4, Irfan Anjum Badruddin5, Syed Javed5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5123-5139, 2023, DOI:10.32604/cmc.2023.034008

    Abstract The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies. Therefore, this paper… More >

  • Open Access

    ARTICLE

    Matrix-Free Higher-Order Finite Element Method for Parallel Simulation of Compressible and Nearly-Incompressible Linear Elasticity on Unstructured Meshes

    Arash Mehraban1, Henry Tufo1, Stein Sture2, Richard Regueiro2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1283-1303, 2021, DOI:10.32604/cmes.2021.017476

    Abstract Higher-order displacement-based finite element methods are useful for simulating bending problems and potentially addressing mesh-locking associated with nearly-incompressible elasticity, yet are computationally expensive. To address the computational expense, the paper presents a matrix-free, displacement-based, higher-order, hexahedral finite element implementation of compressible and nearly-compressible (ν → 0.5) linear isotropic elasticity at small strain with p-multigrid preconditioning. The cost, solve time, and scalability of the implementation with respect to strain energy error are investigated for polynomial order p = 1, 2, 3, 4 for compressible elasticity, and p = 2, 3, 4 for nearly-incompressible elasticity, on different number of CPU cores for… More >

  • Open Access

    ARTICLE

    Isogeometric Collocation: A Mixed Displacement-Pressure Method for Nearly Incompressible Elasticity

    S. Morganti1, F. Fahrendorf2, L. De Lorenzis3, J. A. Evans4, T. J. R. Hughes5,* and A. Reali6

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1125-1150, 2021, DOI:10.32604/cmes.2021.016832

    Abstract We investigate primal and mixed u−p isogeometric collocation methods for application to nearly-incompressible isotropic elasticity. The primal method employs Navier’s equations in terms of the displacement unknowns, and the mixed method employs both displacement and pressure unknowns. As benchmarks for what might be considered acceptable accuracy, we employ constant-pressure Abaqus finite elements that are widely used in engineering applications. As a basis of comparisons, we present results for compressible elasticity. All the methods were completely satisfactory for the compressible case. However, results for low-degree primal methods exhibited displacement locking and in general deteriorated in the nearly-incompressible case. The results for… More >

  • Open Access

    ARTICLE

    Polygonal Finite Element for Two-Dimensional Lid-Driven Cavity Flow

    T. Vu-Huu1, C. Le-Thanh2, H. Nguyen-Xuan3,4, M. Abdel-Wahab3,5,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4217-4239, 2022, DOI:10.32604/cmc.2022.020889

    Abstract This paper investigates a polygonal finite element (PFE) to solve a two-dimensional (2D) incompressible steady fluid problem in a cavity square. It is a well-known standard benchmark (i.e., lid-driven cavity flow)-to evaluate the numerical methods in solving fluid problems controlled by the Navier–Stokes (N–S) equation system. The approximation solutions provided in this research are based on our developed equal-order mixed PFE, called Pe1Pe1. It is an exciting development based on constructing the mixed scheme method of two equal-order discretisation spaces for both fluid pressure and velocity fields of flows and our proposed stabilisation technique. In this research, to handle the… More >

Displaying 1-10 on page 1 of 57. Per Page