Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    REVIEW

    A Comprehensive Survey of Deep Learning for Authentication in Vehicular Communication

    Tarak Nandy1,*, Sananda Bhattacharyya2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 181-219, 2025, DOI:10.32604/cmc.2025.066306 - 29 August 2025

    Abstract In the rapidly evolving landscape of intelligent transportation systems, the security and authenticity of vehicular communication have emerged as critical challenges. As vehicles become increasingly interconnected, the need for robust authentication mechanisms to safeguard against cyber threats and ensure trust in an autonomous ecosystem becomes essential. On the other hand, using intelligence in the authentication system is a significant attraction. While existing surveys broadly address vehicular security, a critical gap remains in the systematic exploration of Deep Learning (DL)-based authentication methods tailored to these communication paradigms. This survey fills that gap by offering a comprehensive… More >

  • Open Access

    ARTICLE

    Attention-Augmented YOLOv8 with Ghost Convolution for Real-Time Vehicle Detection in Intelligent Transportation Systems

    Syed Sajid Ullah1,*, Muhammad Zunair Zamir2, Ahsan Ishfaq2, Salman Khan1

    Journal on Artificial Intelligence, Vol.7, pp. 255-274, 2025, DOI:10.32604/jai.2025.069008 - 29 August 2025

    Abstract Accurate vehicle detection is essential for autonomous driving, traffic monitoring, and intelligent transportation systems. This paper presents an enhanced YOLOv8n model that incorporates the Ghost Module, Convolutional Block Attention Module (CBAM), and Deformable Convolutional Networks v2 (DCNv2). The Ghost Module streamlines feature generation to reduce redundancy, CBAM applies channel and spatial attention to improve feature focus, and DCNv2 enables adaptability to geometric variations in vehicle shapes. These components work together to improve both accuracy and computational efficiency. Evaluated on the KITTI dataset, the proposed model achieves 95.4% mAP@0.5—an 8.97% gain over standard YOLOv8n—along with 96.2% More >

  • Open Access

    ARTICLE

    Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm

    Seongsoo Cho1, Yeonwoo Lee2,*, Cheolhee Yoon3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3769-3793, 2025, DOI:10.32604/cmes.2025.066298 - 30 June 2025

    Abstract As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions, efficient clustering mechanisms are vital to ensure stable and scalable communication. Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems (ITS). This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering (GOA-VNET) algorithm, an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks (VANETs), leveraging the Grasshopper Optimization Algorithm (GOA) to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems (ITS). The proposed GOA-VNET employs an… More >

  • Open Access

    REVIEW

    A Review of Object Detection Techniques in IoT-Based Intelligent Transportation Systems

    Jiaqi Wang, Jian Su*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 125-152, 2025, DOI:10.32604/cmc.2025.064309 - 09 June 2025

    Abstract The Intelligent Transportation System (ITS), as a vital means to alleviate traffic congestion and reduce traffic accidents, demonstrates immense potential in improving traffic safety and efficiency through the integration of Internet of Things (IoT) technologies. The enhancement of its performance largely depends on breakthrough advancements in object detection technology. However, current object detection technology still faces numerous challenges, such as accuracy, robustness, and data privacy issues. These challenges are particularly critical in the application of ITS and require in-depth analysis and exploration of future improvement directions. This study provides a comprehensive review of the development… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems

    Yahia Said1,2,*, Yahya Alassaf3, Refka Ghodhbani4, Taoufik Saidani4, Olfa Ben Rhaiem5

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3005-3018, 2025, DOI:10.32604/cmc.2025.060928 - 17 February 2025

    Abstract Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic… More >

  • Open Access

    ARTICLE

    Context-Aware Feature Extraction Network for High-Precision UAV-Based Vehicle Detection in Urban Environments

    Yahia Said1,*, Yahya Alassaf2, Taoufik Saidani3, Refka Ghodhbani3, Olfa Ben Rhaiem4, Ali Ahmad Alalawi1

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.058903 - 19 December 2024

    Abstract The integration of Unmanned Aerial Vehicles (UAVs) into Intelligent Transportation Systems (ITS) holds transformative potential for real-time traffic monitoring, a critical component of emerging smart city infrastructure. UAVs offer unique advantages over stationary traffic cameras, including greater flexibility in monitoring large and dynamic urban areas. However, detecting small, densely packed vehicles in UAV imagery remains a significant challenge due to occlusion, variations in lighting, and the complexity of urban landscapes. Conventional models often struggle with these issues, leading to inaccurate detections and reduced performance in practical applications. To address these challenges, this paper introduces CFEMNet,… More >

  • Open Access

    ARTICLE

    Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

    Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4343-4361, 2024, DOI:10.32604/cmc.2024.047211 - 26 March 2024

    Abstract Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph More >

  • Open Access

    ARTICLE

    Deep Learning Based Vehicle Detection and Counting System for Intelligent Transportation

    A. Vikram1, J. Akshya2, Sultan Ahmad3,4, L. Jerlin Rubini5, Seifedine Kadry6,7,8, Jungeun Kim9,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 115-130, 2024, DOI:10.32604/csse.2023.037928 - 26 January 2024

    Abstract Traffic monitoring through remote sensing images (RSI) is considered an important research area in Intelligent Transportation Systems (ITSs). Vehicle counting systems must be simple enough to be implemented in real-time. With the fast expansion of road traffic, real-time vehicle counting becomes essential in constructing ITS. Compared with conventional technologies, the remote sensing-related technique for vehicle counting exhibits greater significance and considerable advantages in its flexibility, low cost, and high efficiency. But several techniques need help in balancing complexity and accuracy technique. Therefore, this article presents a deep learning-based vehicle detection and counting system for ITS More >

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509 - 15 December 2023

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from… More >

Displaying 1-10 on page 1 of 39. Per Page