Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    The Artificial Boundary Method for a Nonlinear Interface Problem on Unbounded Domain

    De-hao Yu1 ,Hong-ying Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.3, pp. 227-252, 2008, DOI:10.3970/cmes.2008.035.227

    Abstract In this paper, we apply the artificial boundary method to solve a three-dimensional nonlinear interface problem on an unbounded domain. A spherical or ellipsoidal surface as the artificial boundary is introduced. The exact artificial boundary conditions are derived explicitly in terms of an infinite series and then the well-posedness of the coupled weak formulation in a bounded domain, which is equivalent to the original problem in the unbounded domain, is obtained. The error estimate depends on the mesh size, the term after truncating the infinite series and the location of the artificial boundary. Some numerical examples are presented to demonstrate… More >

  • Open Access

    ARTICLE

    Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic Materials Using the Boundary Element Method

    P.D. Shah1, C.L. Tan1,2, X. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 185-198, 2006, DOI:10.3970/cmes.2006.013.185

    Abstract In this paper, the path independent mutual or M-integral for the computation of the T-stress for interface cracks between dissimilar anisotropic, linear elastic solids, is developed. The required auxiliary field solution is derived from the solution of the problem of an anisotropic composite wedge subjected to a point force at its apex. The Boundary Element Method (BEM) is employed for the numerical stress analysis in which special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the procedure for evaluating the T-stress in a bi-material interface crack and its application are demonstrated by numerical examples. More >

  • Open Access

    ARTICLE

    Analysis of Structure with Material Interface by Meshfree Method

    S. Masuda1, H. Noguchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 131-144, 2006, DOI:10.3970/cmes.2006.011.131

    Abstract This paper presents a novel and accurate technique for modeling discontinuous derivatives in meshfree methods, which will be used in the analysis of structures with material interfaces. The novelty lies in the formulation of the Moving Least Squares Approximation (MLSA) scheme where an introduced discontinuous derivative basis function replaces the conventional linear basis function. Furthermore, it is easy to implement this novelty into existing meshfree methods, such as the Element Free Galerkin (EFG) method, which are based on the MLSA scheme. The successful analyses of one and two-dimensional structures with material interfaces demonstrate the potential of the proposed technique. More >

  • Open Access

    ARTICLE

    Piecewise Linear Models for Interfaces and Mixed Mode Cohesive Cracks1

    G. Cocchetti2, G. Maier2, X. P. Shen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 279-298, 2002, DOI:10.3970/cmes.2002.003.279

    Abstract Interface models mean here relationships between displacement jumps and tractions across a locus of displacement discontinuities. Frictional contact and quasi-brittle fracture interpreted by cohesive crack models are typical mechanical situations concerned by the present unifying approach. Plastic-softening multidissipative interface models are studied in piecewise linear formats, i.e. assuming linearity for yield functions, plastic potentials and relationships between static and kinematic internal variables. The properties and the pros and cons of such simplified models in a variety of formulations (fully non-holonomic in rates, holonomic and in finite steps), all mathematically described as linear complementarity problems, are comparatively investigated in view of… More >

  • Open Access

    ARTICLE

    Three-Dimensional Simulation of the Shear Properties of Steel-Concrete Composite Beams using an Interface Slip Model

    Shiqin He1, Pengfei Li1, Feng Shang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.4, pp. 387-394, 2011, DOI:10.3970/cmes.2011.073.387

    Abstract A three-dimensional finite element (FE) and analytical approach for the simulation of the shear properties of steel-concrete composite beams are presented in this paper. To simulate the interfacial behavior between steel girders and concrete slabs, we apply an interface slip model in the simulation. This model has been used in analyzing the flexural properties of composite beams. Both simply supported beam and continuous composite beam experiments reported in literature are simulated. The load deflection and slip rule between steel girders and concrete slabs, as well as the crack pattern and contour at the ultimate load, are analyzed. The results obtained… More >

  • Open Access

    ARTICLE

    The Coupling FEM and Natural BEM for a Certain Nonlinear Interface Problem with Non-Matching Grids

    Ju’e Yang1, Dehao Yu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.3, pp. 311-330, 2011, DOI:10.3970/cmes.2011.073.311

    Abstract In this paper, we introduce a domain decomposition method with non-matching grids for a certain nonlinear interface problem in unbounded domains. To solve this problem, we discuss a new coupling of finite element method(FE) and natural boundary element(NBE). We first derive the optimal energy error estimate of finite element approximation to the coupled FEM-NBEM problem. Then we use a dual basis multipier on the interface to provide the numerical analysis with non-matching grids.Finally, we give some numerical examples further to confirm our theoretical results. More >

  • Open Access

    ARTICLE

    Analysis of a Crack in a Thin Adhesive Layer between Orthotropic Materials: An Application to Composite Interlaminar Fracture Toughness Test

    L. Távara1, V. Manticˇ 1, E. Graciani1, J. Cañas1, F. París1

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.3, pp. 247-270, 2010, DOI:10.3970/cmes.2010.058.247

    Abstract The problem of a crack in a thin adhesive layer is considered. The adherents may have orthotropic elastic behavior which allows composite laminates to be modeled. In the present work a linear elastic-brittle constitutive law of the thin adhesive layer, called weak interface model, is adopted, allowing an easy modeling of crack propagation along it. In this law, the normal and tangential stresses across the undamaged interface are proportional to the relative normal and tangential displacements, respectively. Interface crack propagation is modeled by successive breaking of the springs used to discretize the weak interface. An important feature of the BEM… More >

  • Open Access

    ARTICLE

    Two-phase flow in complex geometries: A diffuse domain approach

    S. Aland1, J. Lowengrub2, A. Voigt1

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 77-108, 2010, DOI:10.3970/cmes.2010.057.077

    Abstract We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement… More >

  • Open Access

    ARTICLE

    Green's Functions for Anisotropic/Piezoelectric Bimaterials and Their Applications to Boundary Element Analysis

    Y.C. Chen1, Chyanbin Hwu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 31-50, 2010, DOI:10.3970/cmes.2010.057.031

    Abstract The Green's function for anisotropic bimaterials has been investigated around three decades ago. Since the mathematical formulation of piezoelectric elasticity can be organized into the same form as that of anisotropic elasticity by just expanding the dimension of the corresponding matrix to include the piezoelectric effects, the extension of the Green's function to piezoelectric bimaterials can be obtained immediately through the associated anisotropic bimaterials. In this paper, the Green's function for the bimaterials bonded together with one anisotropic material and one piezoelectric material is derived by applying Stroh's complex variable formalism with the aid of analytical continuation method. For this… More >

  • Open Access

    ARTICLE

    Numerical Prediction of Young's and Shear Moduli of Carbon Nanotube Composites Incorporating Nanoscale and Interfacial Effects

    G.I. Giannopoulos1, S.K. Georgantzinos2, D.E. Katsareas2, N.K. Anifantis2

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 231-248, 2010, DOI:10.3970/cmes.2010.056.231

    Abstract A hybrid finite element formulation, combining nanoscopic and macroscopic considerations is proposed, for the prediction of the elastic mechanical properties of single walled carbon nanotube (SWCNT)-based composites. The nanotubes are modeled according to the molecular mechanics theory via the use of spring elements, while the matrix is modeled as a continuum medium. A new formulation concerning the load transfer between the nanotubes and matrix is proposed. The interactions between the two phases are implemented by utilizing appropriate stiffness variations describing a heterogeneous interfacial region. A periodic distribution and orientation of the SWCNTs is considered. Thereupon, the nanocomposite is modeled using… More >

Displaying 111-120 on page 12 of 177. Per Page