Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (124)
  • Open Access

    ARTICLE

    Performance of Deep Learning Techniques in Leaf Disease Detection

    Robertas Damasevicius1,*, Faheem Mahmood2, Yaseen Zaman3, Sobia Dastgeer2, Sajid Khan2

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1349-1366, 2024, DOI:10.32604/csse.2024.050359

    Abstract Plant diseases must be identified as soon as possible since they have an impact on the growth of the corresponding species. Consequently, the identification of leaf diseases is essential in this field of agriculture. Diseases brought on by bacteria, viruses, and fungi are a significant factor in reduced crop yields. Numerous machine learning models have been applied in the identification of plant diseases, however, with the recent developments in deep learning, this field of study seems to hold huge potential for improved accuracy. This study presents an effective method that uses image processing and deep… More >

  • Open Access

    ARTICLE

    Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2

    Zhilin Li1,2, Yuxin Li1, Chunyu Yan1, Peng Yan1, Xiutong Li1, Mei Yu1, Tingchi Wen4,5, Benliang Xie1,2,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 679-694, 2024, DOI:10.32604/cmc.2024.051526

    Abstract Diseases in tea trees can result in significant losses in both the quality and quantity of tea production. Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations. However, existing methods face challenges such as a high number of parameters and low recognition accuracy, which hinders their application in tea plantation monitoring equipment. This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves, to address these challenges. The proposed method first embeds a Coordinate Attention (CA) module into the original MobileNetV2 network, enabling the model to locate disease More >

  • Open Access

    REVIEW

    Coffee Leaf Rust (Hemileia vastatrix) Disease in Coffee Plants and Perspectives by the Disease Control

    Alexis Salazar-Navarro1, Victor Ruiz-Valdiviezo2, Jose Joya-Dávila3, Daniel Gonzalez-Mendoza1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 923-949, 2024, DOI:10.32604/phyton.2024.049612

    Abstract Coffee Leaf Rust (CLR) is caused by Hemileia vastatrix in Coffea spp. It is one of the most dangerous phytopathogens for coffee plantations in terms of coffee productivity and coffee cup quality. In this review, we resume the problem of CLR in Mexico and the pathogenesis of H. vastatrix. The review abord plant-pathogen interactions which lead a compatible or incompatible interactions and result in CLR disease or resistance, respectively. The review abord Coffea spp. defense response pathways involved in H. vastatrix pathogenicity. Additionally, current measures to control H. vastatrix proliferation and germination were aborded focused on phytosanitary actions, and biological More >

  • Open Access

    ARTICLE

    Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems

    Jingcheng Zhang1, Xingjian Zhou1, Dong Shen1, Qimeng Yu1, Lin Yuan2,*, Yingying Dong3

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 745-762, 2024, DOI:10.32604/phyton.2024.049734

    Abstract As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv. oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result of the disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remote sensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutions offer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapid dispersal under suitable conditions, making it difficult to track the disease at… More >

  • Open Access

    ARTICLE

    Effects of Potassium-Solubilizing Bacteria on Growth, Antioxidant Activity and Expression of Related Genes in Fritillaria taipaiensis P. Y. Li

    Jiaqi Lang1, Mingyan Ye1, Ya Luo1, Yueheng Wang1, Zhifen Shi1,2, Xiaotian Kong1,3, Xuan Li1, Nong Zhou1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 789-806, 2024, DOI:10.32604/phyton.2024.049088

    Abstract This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains of potassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthesis and physiological and biochemical characteristics. At present, some studies have only studied the rhizosphere microbial community characteristics of F. taipaiensis and have not discussed the effects of different microbial species on the growth promotion of F. taipaiensis. This paper will start from the perspective of potassium-solubilizing bacteria to conduct an in-depth study. Seed cultivation commenced at the base with three different KSBs in early October 2022. The growth of F. taipaiensisMore >

  • Open Access

    ARTICLE

    Changes in Leaf Stomatal Properties in Rice with the Growing Season

    Jiana Chen1,2, Fangbo Cao1,2, Min Huang1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 807-817, 2024, DOI:10.32604/phyton.2024.048299

    Abstract Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matter production. Early-season rice varieties transplanted in the late season can obtain high yields with short-growth duration and higher yields driven by higher dry matter production. To make clear the variations in dry matter production across seasons, four early-season rice varieties were chosen for late-season transplantation. The grain yield, dry matter accumulation, leaf photosynthetic, and leaf stomatal properties were studied. It was observed that the average yields of these four varieties in the late season were 33% greater, despite… More >

  • Open Access

    ARTICLE

    Profiles of the Headspace Volatile Organic and Essential Oil Compounds from the Tunisian Cardaria draba (L.) Desv. and Its Leaf and Stem Epidermal Micromorphology

    Wissal Saadellaoui1, Samiha Kahlaoui1, Kheiria Hcini1, Abir Haddada1, Noomene Sleimi2,*, Roberta Ascrizzi3, Guido Flamini3, Fethia Harzallah-Skhiri4, Sondes Stambouli-Essassi1

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 725-744, 2024, DOI:10.32604/phyton.2024.048110

    Abstract In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardaria draba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total of 37 volatile organic compounds (96.7%–98.9%) were identified; 4 esters, 4 alcohols, 7 hydrocarbons, 12 aldehydes, 5 ketones, 1 lactone, 1 organosulfur compound, 2 organonitrogen compounds, and 1 acid. The hydrocarbons form the main group, representing 49.5%–84.6% of the total detected volatiles. The main constituent was 2,2,4,6,6-pentamethylheptane (44.5%–76.2%) reaching the highest relative percentages. Forty-two compounds were determined in the two fractions… More >

  • Open Access

    ARTICLE

    Transcriptome Analysis of Inflorescence Development at the Five-Leaf Stage in Castor (Ricinus communis L.)

    Yong Zhao1,#, Yaxuan Jiang3,#, Li Wen1, Rui Luo2, Guorui Li2, Jianjun Di2, Mingda Yin2, Zhiyan Wang2, Fenglan Huang2,4,5,6,7,*, Fanjuan Meng3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 713-723, 2024, DOI:10.32604/phyton.2024.047657

    Abstract The yield of castor is influenced by the type of inflorescence and the proportion of female flowers. However, there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences. In this study, we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage. In comparison to the MI (complete pistil without willow leaves), 290 and 89 differentially expressed genes (DEGs) were found in the SFI (complete pistil with willow leaves) and the BI (monoecious inflorescence), respectively. Among the DEGs, 104 and 88 were upregulated in the… More >

  • Open Access

    ARTICLE

    Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds

    Ankita Gangwar1, Vijaypal Singh Dhaka1, Geeta Rani2,*, Shrey Khandelwal1, Ester Zumpano3,4, Eugenio Vocaturo3,4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 117-142, 2024, DOI:10.32604/cmc.2024.048119

    Abstract A consumption of 46.9 million tons of processed tomatoes was reported in 2022 which is merely 20% of the total consumption. An increase of 3.3% in consumption is predicted from 2024 to 2032. Tomatoes are also rich in iron, potassium, antioxidant lycopene, vitamins A, C and K which are important for preventing cancer, and maintaining blood pressure and glucose levels. Thus, tomatoes are globally important due to their widespread usage and nutritional value. To face the high demand for tomatoes, it is mandatory to investigate the causes of crop loss and minimize them. Diseases are… More >

  • Open Access

    ARTICLE

    Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models

    Mahmood A. Mahmood1,2,*, Khalaf Alsalem1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3431-3448, 2024, DOI:10.32604/cmc.2024.047604

    Abstract Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image dataset is… More >

Displaying 1-10 on page 1 of 124. Per Page