Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,001)
  • Open Access

    ARTICLE

    Prediction of Root Zone Temperature Dynamics at Effective Depth on Lettuce Production in Greenhouse Using Sensitivity and Feature Importance Analysis with XGBoost

    Hasan Kaan Kucukerdem*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.074188 - 30 January 2026

    Abstract Root-zone temperature (RZT) strongly affects plant growth, nutrient uptake and tolerance to environmental stress, making its regulation a key challenge in greenhouse cultivation in cold climates. This study aimed to assess the potential of passive techniques, namely black polyethylene mulch and row covers, for modifying RZT dynamics in lettuce (Lactuca sativa L.) production and to evaluate the predictive performance of the eXtreme Gradient Boosting (XGBoost) algorithm. Experiments were conducted in Iğdır, Türkiye, over a 61-day period, with soil temperature continuously monitored at depths of 1–30 cm under mulched and non-mulched conditions, alongside measurements of greenhouse air… More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Deep Learning Architectures for AI-Assisted Breast Cancer Detection in Mammography Using the MammosighTR Dataset: A Nationwide Turkish Screening Study (2016–2022)

    Nuh Azginoglu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075834 - 29 January 2026

    Abstract Breast cancer screening programs rely heavily on mammography for early detection; however, diagnostic performance is strongly affected by inter-reader variability, breast density, and the limitations of conventional computer-aided detection systems. Recent advances in deep learning have enabled more robust and scalable solutions for large-scale screening, yet a systematic comparison of modern object detection architectures on nationally representative datasets remains limited. This study presents a comprehensive quantitative comparison of prominent deep learning–based object detection architectures for Artificial Intelligence-assisted mammography analysis using the MammosighTR dataset, developed within the Turkish National Breast Cancer Screening Program. The dataset comprises… More >

  • Open Access

    ARTICLE

    Algorithmically Enhanced Data-Driven Prediction of Shear Strength for Concrete-Filled Steel Tubes

    Shengkang Zhang1, Yong Jin2,*, Soon Poh Yap1,*, Haoyun Fan1, Shiyuan Li3, Ahmed El-Shafie4, Zainah Ibrahim1, Amr El-Dieb5

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075351 - 29 January 2026

    Abstract Concrete-filled steel tubes (CFST) are widely utilized in civil engineering due to their superior load-bearing capacity, ductility, and seismic resistance. However, existing design codes, such as AISC and Eurocode 4, tend to be excessively conservative as they fail to account for the composite action between the steel tube and the concrete core. To address this limitation, this study proposes a hybrid model that integrates XGBoost with the Pied Kingfisher Optimizer (PKO), a nature-inspired algorithm, to enhance the accuracy of shear strength prediction for CFST columns. Additionally, quantile regression is employed to construct prediction intervals for… More >

  • Open Access

    ARTICLE

    Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning in Mental-Health Risk Assessment

    Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,*, Seungmin Rho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075119 - 29 January 2026

    Abstract Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm, long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances, detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper presents a Continual Neuro-Symbolic Graph… More >

  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

  • Open Access

    ARTICLE

    Learning-Based Prediction of Soft-Tissue Motion for Latency Compensation in Teleoperation

    Guangyu Xu1,2, Yuxin Liu1, Bo Yang1, Siyu Lu3,*, Chao Liu4, Junmin Lyu5, Wenfeng Zheng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074938 - 29 January 2026

    Abstract Soft-tissue motion introduces significant challenges in robotic teleoperation, especially in medical scenarios where precise target tracking is critical. Latency across sensing, computation, and actuation chains leads to degraded tracking performance, particularly around high-acceleration segments and trajectory inflection points. This study investigates machine learning-based predictive compensation for latency mitigation in soft-tissue tracking. Three models—autoregressive (AR), long short-term memory (LSTM), and temporal convolutional network (TCN)—were implemented and evaluated on both synthetic and real datasets. By aligning the prediction horizon with the end-to-end system delay, we demonstrate that prediction-based compensation significantly reduces tracking errors. Among the models, TCN More >

  • Open Access

    REVIEW

    The Transparency Revolution in Geohazard Science: A Systematic Review and Research Roadmap for Explainable Artificial Intelligence

    Moein Tosan1,*, Vahid Nourani2,3, Ozgur Kisi4,5,6, Yongqiang Zhang7, Sameh A. Kantoush8, Mekonnen Gebremichael9, Ruhollah Taghizadeh-Mehrjardi10, Jinhui Jeanne Huang11

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074768 - 29 January 2026

    Abstract The integration of machine learning (ML) into geohazard assessment has successfully instigated a paradigm shift, leading to the production of models that possess a level of predictive accuracy previously considered unattainable. However, the black-box nature of these systems presents a significant barrier, hindering their operational adoption, regulatory approval, and full scientific validation. This paper provides a systematic review and synthesis of the emerging field of explainable artificial intelligence (XAI) as applied to geohazard science (GeoXAI), a domain that aims to resolve the long-standing trade-off between model performance and interpretability. A rigorous synthesis of 87 foundational… More >

  • Open Access

    ARTICLE

    Noninvasive Radar Sensing Augmented with Machine Learning for Reliable Detection of Motor Imbalance

    Faten S. Alamri1, Adil Ali Saleem2, Muhammad I. Khan3, Hafeez Ur Rehman Siddiqui2, Amjad Rehman3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074679 - 29 January 2026

    Abstract Motor imbalance is a critical failure mode in rotating machinery, potentially causing severe equipment damage if undetected. Traditional vibration-based diagnostic methods rely on direct sensor contact, leading to installation challenges and measurement artifacts that can compromise accuracy. This study presents a novel radar-based framework for non-contact motor imbalance detection using 24 GHz continuous-wave radar. A dataset of 1802 experimental trials was sourced, covering four imbalance levels (0, 10, 20, 30 g) across varying motor speeds (500–1500 rpm) and load torques (0–3 Nm). Dual-channel in-phase and quadrature radar signals were captured at 10,000 samples per second… More >

  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    Multivariate Data Anomaly Detection Based on Graph Structure Learning

    Haoxiang Wen1, Zhaoyang Wang1, Zhonglin Ye1,*, Haixing Zhao1, Maosong Sun2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074410 - 29 January 2026

    Abstract Multivariate anomaly detection plays a critical role in maintaining the stable operation of information systems. However, in existing research, multivariate data are often influenced by various factors during the data collection process, resulting in temporal misalignment or displacement. Due to these factors, the node representations carry substantial noise, which reduces the adaptability of the multivariate coupled network structure and subsequently degrades anomaly detection performance. Accordingly, this study proposes a novel multivariate anomaly detection model grounded in graph structure learning. Firstly, a recommendation strategy is employed to identify strongly coupled variable pairs, which are then used More >

Displaying 1-10 on page 1 of 4001. Per Page