Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Reduced-Order Observer-Based LQR Controller Design for Rotary Inverted Pendulum

    Guogang Gao1, Lei Xu1, Tianpeng Huang2,*, Xuliang Zhao1, Lihua Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 305-323, 2024, DOI:10.32604/cmes.2024.047899

    Abstract The Rotary Inverted Pendulum (RIP) is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge. Despite the implementation of various control strategies to maintain equilibrium, optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive. Existing methods frequently rely on extensive experimental data or the designer’s expertise, presenting a notable drawback. This paper proposes a novel tracking control approach for RIP, utilizing a Linear Quadratic Regulator (LQR) in combination with a reduced-order observer. Initially, the RIP system is mathematically modeled using the… More >

  • Open Access

    ARTICLE

    Analysing Various Control Technics for Manipulator Robotic System (Robogymnast)

    Mahmoud Mohamed1,2,*, Bdereddin Abdul Samad1,3, Fatih Anayi1, Michael Packianather1, Khalid Yahya4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4681-4696, 2023, DOI:10.32604/cmc.2023.035312

    Abstract The Robogymnast is a highly complex, three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger upswings to eventually rotate fully. The links of the Robogymnast correspond respectively to the arms, trunk, and lower limbs of the gymnast, and from its three joints, one is under passive operation, while the remaining two are powered. The passive top joint poses severe challenges in attaining the smooth movement control needed to operate the Robogymnast effectively. This study assesses four types of controllers… More >

  • Open Access

    ARTICLE

    Computing of LQR Technique for Nonlinear System Using Local Approximation

    Aamir Shahzad1, Ali Altalbe2,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 853-871, 2023, DOI:10.32604/csse.2023.035575

    Abstract The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator (LQR) technique using local approximation. The LQR is an excellent method for developing a controller for nonlinear systems. It provides optimal feedback to make the closed-loop system robust and stable, rejecting external disturbances. Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler, Lagrange method, and local approximation. Therefore, implementing LQR to an underactuated nonlinear system was vital to design a stable… More >

  • Open Access

    ARTICLE

    Design and Implementation of a State-feedback Controller Using LQR Technique

    Aamir Shahzad1,*, Shadi Munshi2, Sufyan Azam2, Muhammad Nasir Khan3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2897-2911, 2022, DOI:10.32604/cmc.2022.028441

    Abstract The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator (LQR) technique. The controller maintains the pendulum in the inverted (upright) position and is robust enough to reject external disturbance to maintain its stability. The research work involves three major contributions: mathematical modeling, simulation, and real-time implementation. To design a controller, mathematical modeling has been done by employing the Newton-Euler, Lagrange method. The resulting model was nonlinear so linearization was required, which has been done around a working point. For the estimation of the controller parameters, MATLAB… More >

  • Open Access

    ARTICLE

    Kalman Filter and H Filter Based Linear Quadratic Regulator for Furuta Pendulum

    N. Arulmozhi1,*, T. Aruldoss Albert Victorie2

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 605-623, 2022, DOI:10.32604/csse.2022.023376

    Abstract This paper deals with Furuta Pendulum (FP) or Rotary Inverted Pendulum (RIP), which is an under-actuated non-minimum unstable non-linear process. The process considered along with uncertainties which are unmodelled and analyses the performance of Linear Quadratic Regulator (LQR) with Kalman filter and H filter as two filter configurations. The LQR is a technique for developing practical feedback, in addition the desired x shows the vector of desirable states and is used as the external input to the closed-loop system. The effectiveness of the two filters in FP or RIP are measured and contrasted with rise time, peak time, settling time… More >

  • Open Access

    ARTICLE

    Kautz Function Based Continuous-Time Model Predictive Controller for Load Frequency Control in a Multi-Area Power System

    A. Parassuram1,*, P. Somasundaram1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.2, pp. 169-187, 2018, DOI:10.31614/cmes.2018.01720

    Abstract A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control (LFC). A dynamic model of an interconnected power system was used for Model Predictive Controller (MPC) design. MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix. In this paper, the optimal closed loop feedback gain matrix was calculated using Kautz function. Being an Orthonormal Basis Function (OBF), Kautz function has an advantage of solving complex pole-based nonlinear system. Genetic Algorithm (GA) was applied to optimally tune the Kautz function-based MPC. A… More >

Displaying 1-10 on page 1 of 6. Per Page