Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Sliding Mode Control of Hydraulic Pressure in Electro-Hydraulic Brake System Based on the Linearization of Higher-Order Model

    Qiping Chen*, Haoyu Sun, Ning Wang, Zhi Niu, Rui Wan

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 513-524, 2020, DOI:10.32604/fdmp.2020.09375

    Abstract The possibility to enhance the stability and robustness of electrohydraulic brake (EHB) systems is considered a subject of great importance in the automotive field. In such a context, the present study focuses on an actuator with a four-way sliding valve and a hydraulic cylinder. A 4-order nonlinear mathematical model is introduced accordingly. Through the linearization of the feedback law of the high order EHB model, a sliding mode control method is proposed for the hydraulic pressure. The hydraulic pressure tracking controls are simulated and analyzed by MATLAB/Simulink soft considering separately different conditions, i.e., a sine wave, a square wave and… More >

  • Open Access

    ARTICLE

    Explicit Shifted Second-kind Chebyshev Spectral Treatment for Fractional Riccati Differential Equation

    W. M. Abd-Elhameed1,2,*, Y. H. Youssri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 1029-1049, 2019, DOI:10.32604/cmes.2019.08378

    Abstract This paper is confined to analyzing and implementing new spectral solutions of the fractional Riccati differential equation based on the application of the spectral tau method. A new explicit formula for approximating the fractional derivatives of shifted Chebyshev polynomials of the second kind in terms of their original polynomials is established. This formula is expressed in terms of a certain terminating hypergeometric function of the type 4F3(1). This hypergeometric function is reduced in case of the integer case into a certain terminating hypergeometric function of the type 3F2(1) which can be summed with the aid of Watson’s identity. Six illustrative… More >

  • Open Access

    ARTICLE

    Numerical Solutions of Fractional System of Partial Differential Equations By Haar Wavelets

    F. Bulut1,2, Ö. Oruç3, A. Esen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.4, pp. 263-284, 2015, DOI:10.3970/cmes.2015.108.263

    Abstract In this paper, time fractional one dimensional coupled KdV and coupled modified KdV equations are solved numerically by Haar wavelet method. Proposed method is new in the sense that it doesn’t use fractional order Haar operational matrices. In the proposed method L1 discretization formula is used for time discretization where fractional derivatives are Caputo derivative and spatial discretization is made by Haar wavelets. L2 and L error norms for various initial and boundary conditions are used for testing accuracy of the proposed method when exact solutions are known. Numerical results which produced by the proposed method for the problems under… More >

  • Open Access

    ARTICLE

    Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations

    J.R. Zabadal1, B. Bodmann1, V. G. Ribeiro2, A. Silveira2, S. Silveira2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.4, pp. 215-227, 2014, DOI:10.3970/cmes.2014.103.215

    Abstract This work presents a new analytical method to transform exact solutions of linear diffusion equations into exact ones for nonlinear advection-diffusion models. The proposed formulation, based on Bäcklund transformations, is employed to obtain velocity fields for the unsteady two-dimensional Helmholtz equation, starting from analytical solutions of a heat conduction type model. More >

  • Open Access

    ARTICLE

    A High-Order Finite-Difference Scheme with a Linearization Technique for Solving of Three-Dimensional Burgers Equation

    M.D. Campos1, E.C. Romão2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.3, pp. 139-154, 2014, DOI:10.3970/cmes.2014.103.139

    Abstract The objective of this paper aims to present a numerical solution of high accuracy and low computational cost for the three-dimensional Burgers equations. It is a well-known problem and studied the form for one and two-dimensional, but still little explored numerically for three-dimensional problems. Here, by using the High-Order Finite Difference Method for spatial discretization, the Crank-Nicolson method for time discretization and an efficient linearization technique with low computational cost, two numerical applications are used to validate the proposed formulation. In order to analyze the numerical error of the proposed formulation, an unpublished exact solution was used. More >

  • Open Access

    ARTICLE

    Quasilinear Hybrid Boundary Node Method for Solving Nonlinear Problems

    F. Yan1,2, Y. Miao2,3, Q. N. Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 21-50, 2009, DOI:10.3970/cmes.2009.046.021

    Abstract A novel boundary type meshless method called Quasilinear Hybrid Boundary Node Method (QHBNM), which combines quasilinearization method, dual reciprocity method (DRM) and hybrid boundary node method (HBNM), is developed to solving a class of nonlinear problems. The nonlinear term of the governing equation is linearized by the generated quasilinearization method, in which the solution of the linearized equation can exactly converge to the solution of original equation at a very wide range initial value, and the convergence rate is quadratic. Then dual hybrid boundary node method is applied to solving the linearized equation, in which DRM is introduced into HBNM… More >

  • Open Access

    ARTICLE

    New insights in nonlinear static stability analysis by the FEM

    B. Pichler1, H.A. Mang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 43-55, 2000, DOI:10.3970/cmes.2000.001.345

    Abstract In order to avoid a fully nonlinear analysis to obtain stability limits on nonlinear load-displacement paths, linear eigenvalue problems may be used to compute estimates of such limits. In this paper an asymptotic approach for assessment of the errors resulting from such estimates is presented. Based on the consistent linearization of the geometrically nonlinear static stability criterion – the so-called consistently linearized eigenvalue problem – higher-order estimation functions can be calculated. They are obtained from a scalar post-calculation performed after the solution of the eigenproblem. Different extensions of these higher-order estimation functions are presented. An ab initio criterion for the… More >

Displaying 11-20 on page 2 of 17. Per Page