Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    REVIEW

    An Overview of Sequential Approximation in Topology Optimization of Continuum Structure

    Kai Long1, Ayesha Saeed1, Jinhua Zhang2, Yara Diaeldin1, Feiyu Lu1, Tao Tao3, Yuhua Li1,*, Pengwen Sun4, Jinshun Yan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 43-67, 2024, DOI:10.32604/cmes.2023.031538

    Abstract This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures. These structures, commonly encountered in engineering applications, often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables. As a result, sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges. Over the past several decades, topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds. In comparison to the large-scale equation solution,… More >

  • Open Access

    PROCEEDINGS

    Linearization Solution and Component Tracking of Natural Gas Pipeline Transient Simulation

    Yuming He1,*, Jie Chen1, Yubo Jiao1, Wei Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09061

    Abstract In present study, a fast simulation algorithm based on linearization is used to simulate the flow parameters of the natural gas pipeline under transient operating conditions, analyze the impact of natural gas components on the transient operation, and conduct the tracking calculation of natural gas components [1- 3]. Under the condition that the simulation calculation accuracy is not affected, the first-order Taylor linearization expansion method is used to linearize the transient simulation model of natural gas pipeline, while the second-order implicit difference dispersion method is used to obtain the linearized discrete equations without initial value selection and multiple iterative solutions,… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CONVECTIVE BOUNDARY CONDITION ON NONLINEAR THERMAL CONVECTION FLOW OF A MICROPOLAR FLUID SATURATED POROUS MEDIUM WITH HOMOGENEOUS-HETEROGENEOUS REACTIONS

    Chetteti RamReddya,†, Teegala Pradeepaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.6

    Abstract A numerical approach has been used to analyze the effects of homogeneous-heterogeneous reaction and nonlinear density temperature variation over a vertical plate in an incompressible micropolar fluid flow saturated Darcy porous medium. In addition, convective boundary condition is incorporated in a micropolar fluid model. The similarity representation for the set of partial differential equations is attained by applying Lie group transformations. The resulting non-dimensional equations are worked out numerically by spectral quasi-linearization method. Less temperature and wall couple stress coefficient, but more velocity, skin friction, species concentration, and heat transfer rate are noticed by enhancing the nonlinear convection parameter. It… More >

  • Open Access

    ARTICLE

    NONLINEAR CONVECTIVE TRANSPORT ALONG AN INCLINED PLATE IN NON-DARCY POROUS MEDIUM SATURATED BY A MICROPOLAR FLUID WITH CONVECTIVE BOUNDARY CONDITION

    Ch. RamReddy , P. Naveen, D. Srinivasacharya

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.35

    Abstract The role of nonlinear variation of density with temperature (NDT) and concentration (NDC) on the free convective flow of non-Darcy micropolar fluid over an inclined plate has been studied for the first time. In addition, the modified form of thermal slip and isothermal condition is utilized to address heat transfer phenomena in nuclear plants, textile drying, and heat exchangers, etc. The respective partial differential equations and boundary conditions are cast into a sequence of the ordinary differential equation by the local non-similarity technique. The remodeled equations are simplified numerically by applying a successive linearization method (SLM). A constructive investigation emphasizing… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD BLASIUS AND SAKIADIS FLOWS WITH VARIABLE THERMAL CONDUCTIVITY IN THE PRESENCE OF THERMAL RADIATION AND VISCOUS DISSIPATION

    Stanford Shateyia,∗, Hillary Muzarab

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.18

    Abstract A theoretical analysis has been carried out to investigate the influence of unsteadiness on the laminar two-phase magnetohydrodynamic nanofluid flow filled with porous medium under the combined effects of Brownian motion and thermophoresis. Thermal variable conductivity, thermal radiation and viscous dissipation effects are also considered in this numerical study. The highly nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations through suitable similarity transformations. The resultant ordinary differential equations are then numerically solved using the spectral quasilinearization method. The effects of the pertinent physical parameters over the fluid velocity, temperature, concentration, skin friction, Nusselt… More >

  • Open Access

    ARTICLE

    FLUID FLOW AND HEAT TRANSFER OVER A STRETCHING SHEET WITH TEMPERATURE DEPENDENT PRANDTL NUMBER AND VISCOSITY

    N. Govindaraj, A. K. Singh, Pankaj Shukla

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.20

    Abstract A numerical study of fluid flow over stretching sheet with temperature dependent properties has been performed induced by mixed convection. The significant variation of the Prandtl number and viscosity in the temperature is observed [see table 1]. Viscosity and Prandtl number are vary in inverse of the linear function. The physical problem modeled in the mathematical equations in dimension form, which is converted to the non-dimensional equations by applying similarity transformations and suitable boundary conditions. The mathematical modelling problem is transformed PDE’s are numerically solved using Quasilinearization technique and FDM. The current numerical data has been presented in terms of… More >

  • Open Access

    ARTICLE

    Output Linearization of Single-Input Single-Output Fuzzy System to Improve Accuracy and Performance

    Salah-ud-din Khokhar1,2,*, QinKe Peng1, Muhammad Yasir Noor3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2413-2427, 2023, DOI:10.32604/cmc.2023.036148

    Abstract For fuzzy systems to be implemented effectively, the fuzzy membership function (MF) is essential. A fuzzy system (FS) that implements precise input and output MFs is presented to enhance the performance and accuracy of single-input single-output (SISO) FSs and introduce the most applicable input and output MFs protocol to linearize the fuzzy system’s output. Utilizing a variety of non-linear techniques, a SISO FS is simulated. The results of FS experiments conducted in comparable conditions are then compared. The simulated results and the results of the experimental setup agree fairly well. The findings of the suggested model demonstrate that the relative… More >

  • Open Access

    ARTICLE

    Design and Implementation of a State-feedback Controller Using LQR Technique

    Aamir Shahzad1,*, Shadi Munshi2, Sufyan Azam2, Muhammad Nasir Khan3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2897-2911, 2022, DOI:10.32604/cmc.2022.028441

    Abstract The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator (LQR) technique. The controller maintains the pendulum in the inverted (upright) position and is robust enough to reject external disturbance to maintain its stability. The research work involves three major contributions: mathematical modeling, simulation, and real-time implementation. To design a controller, mathematical modeling has been done by employing the Newton-Euler, Lagrange method. The resulting model was nonlinear so linearization was required, which has been done around a working point. For the estimation of the controller parameters, MATLAB… More >

  • Open Access

    ARTICLE

    Examination of Pine Wilt Epidemic Model through Efficient Algorithm

    Ali Raza1,*, Emad E. Mahmoud2, A. M. Al-Bugami2, Dumitru Baleanu3,4, Muhammad Rafiq5, Muhammad Mohsin6, Muneerah Al Nuwairan7

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5293-5310, 2022, DOI:10.32604/cmc.2022.024535

    Abstract Pine wilt is a dramatic disease that kills infected trees within a few weeks to a few months. The cause is the pathogen Pinewood Nematode. Most plant-parasitic nematodes are attached to plant roots, but pinewood nematodes are found in the tops of trees. Nematodes kill the tree by feeding the cells around the resin ducts. The modeling of a pine wilt disease is based on six compartments, including three for plants (susceptible trees, exposed trees, and infected trees) and the other for the beetles (susceptible beetles, exposed beetles, and infected beetles). The deterministic modeling, along with subpopulations, is based on… More >

  • Open Access

    ARTICLE

    Quad-Rotor Directional Steering System Controller Design Using Gravitational Search Optimization

    M. A. Kamela, M. A. Abidob, Moustafa Elshafeic

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 795-805, 2018, DOI:10.1080/10798587.2017.1342414

    Abstract Directional Steering System (DSS) has been established for well drilling in the oilfield in order to accomplish high reservoir productivity and to improve accessibility of oil reservoirs in complex locations. In this paper, a novel feedback linearization controller to cancel the nonlinear dynamics of a DSS is proposed. The proposed controller design problem is formulated as an optimization problem for optimal settings of the controller feedback gains. Gravitational Search Algorithm (GSA) is developed to search for optimal settings of the proposed controller. The objective function considered is to minimize the tracking error and drilling efforts. In this study, the DSS… More >

Displaying 1-10 on page 1 of 17. Per Page