Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (585)
  • Open Access

    ARTICLE

    Analytical Full-field Solutions of a Piezoelectric Layered Half-plane Subjected to Generalized Loadings

    Chien-Ching Ma1,2, Wen-Cha Wu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 79-108, 2009, DOI:10.3970/cmc.2009.011.079

    Abstract The two-dimensional problem of a planar transversely isotropic piezoelectric layered half-plane subjected to generalized line forces and edge dislocations in the layer is analyzed by using the Fourier-transform method and the series expansion technique. The full-field solutions for displacements, stresses, electrical displacements and electric fields are expressed in explicit closed forms. The complete solutions consist only of the simplest solutions for an infinite piezoelectric medium with applied loadings. It is shown in this study that the physical meaning of this solution is the image method. The explicit solutions include Green's function for originally applied loadings in an infinite piezoelectric medium… More >

  • Open Access

    ARTICLE

    Collapse Analysis, Defect Sensitivity and Load Paths in Stiffened Shell Composite Structures

    D.W. Kelly1, M.C.W. Lee1, A.C. Orifici2,3, R.S.Thomson3, R. Degenhardt4,5

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 163-194, 2009, DOI:10.3970/cmc.2009.010.163

    Abstract An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the… More >

  • Open Access

    ARTICLE

    Limit Load of Soil-Root Composites

    Yang Pu1, Xiang Zhihai1, Hu Xiasong2, Li Guorong2, Zhu Haili2, Mao XiaoqinCen2, Zhangzhi1,3

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 117-138, 2009, DOI:10.3970/cmc.2009.010.117

    Abstract This paper studies the influence of root reinforcement on shallow soil protection by using Finite Element (FE) method. Taking the root-soil composite as a periodic material, the homogenization method is used to construct a Representative Volume Element (RVE) that consists of roots and soil. This RVE is discretized by a two-dimensional (2-D) FE mesh, while special formulation is established so that this model is capable of describing three-dimensional (3-D) deformations when the strain is invariant along the fiber axis. The important effect of debonding on the interface between the fiber and the matrix is also considered by using a special… More >

  • Open Access

    ARTICLE

    A Displacement Solution to Transverse Shear Loading of Composite Beams by BEM

    E.J. Sapountzakis1, V.G. Mokos2

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 1-40, 2009, DOI:10.3970/cmc.2009.010.001

    Abstract In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading problem of composite beams of arbitrary constant cross section. The composite beam (thin or thick walled) consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the principal bending ones. The transverse… More >

  • Open Access

    ARTICLE

    Simulation of Thin Film Delamination Under Thermal Loading

    L. Chernin1, K.Y. Volokh1,2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 259-274, 2004, DOI:10.3970/cmc.2004.001.259

    Abstract The conventional approach to analysis of thin film delamination is based on the consideration of the film, which is subjected to residual stresses arising from the thermal mismatch between the film and the substrate, within the framework of the classical fracture mechanics and the structural buckling theories. Such concepts as the energy release rate and the stress intensity factors are crucial in this case.

    A different approach to analysis of thin film delamination considers the effect of the compliant interface between the film and the substrate. This compliant interface is described by the traction-separation constitutive law.

    More >

Displaying 581-590 on page 59 of 585. Per Page