Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA

    Jiahao Wen, Zhijian Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 749-765, 2023, DOI:10.32604/cmes.2023.023865 - 05 January 2023

    Abstract Since the existing prediction methods have encountered difficulties in processing the multiple influencing factors in short-term power load forecasting, we propose a bidirectional long short-term memory (BiLSTM) neural network model based on the temporal pattern attention (TPA) mechanism. Firstly, based on the grey relational analysis, datasets similar to forecast day are obtained. Secondly, the bidirectional LSTM layer models the data of the historical load, temperature, humidity, and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network, so that the influencing factors (with different characteristics) can select relevant… More >

  • Open Access

    ARTICLE

    Electric Vehicle Charging Capacity of Distribution Network Considering Conventional Load Composition

    Pengwei Yang1, Yuqi Cao2, Jie Tan2, Junfa Chen1, Chao Zhang1, Yan Wang1, Haifeng Liang2,*

    Energy Engineering, Vol.120, No.3, pp. 743-762, 2023, DOI:10.32604/ee.2023.024128 - 03 January 2023

    Abstract At present, the large-scale access to electric vehicles (EVs) is exerting considerable pressure on the distribution network. Hence, it is particularly important to analyze the capacity of the distribution network to accommodate EVs. To this end, we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load. First, the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed. Second, the charging behavior of an EV is simulated by combining the Monte Carlo method and the trip chain theory. After obtaining… More >

  • Open Access

    ARTICLE

    Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid

    Manish Kumar1,2,*, Nitai Pal1

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4785-4799, 2023, DOI:10.32604/cmc.2022.032971 - 28 December 2022

    Abstract Increasing energy demands due to factors such as population, globalization, and industrialization has led to increased challenges for existing energy infrastructure. Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable, cheap, and easily available sources of energy. Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions. But the integration of distributed energy sources and increase in electric demand enhance instability in the grid. Short-term electrical load forecasting reduces the grid… More >

  • Open Access

    ARTICLE

    Data-Driven Load Forecasting Using Machine Learning and Meteorological Data

    Aishah Alrashidi, Ali Mustafa Qamar*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1973-1988, 2023, DOI:10.32604/csse.2023.024633 - 01 August 2022

    Abstract Electrical load forecasting is very crucial for electrical power systems’ planning and operation. Both electrical buildings’ load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting. The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh, Saudi Arabia. The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017. These data are provided by King Abdullah City for… More >

  • Open Access

    ARTICLE

    Frequency Control Approach and Load Forecasting Assessment for Wind Systems

    K. Sukanya*, P. Vijayakumar

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 971-982, 2023, DOI:10.32604/iasc.2023.028047 - 06 June 2022

    Abstract Frequency deviation has to be controlled in power generation units when there are fluctuations in system frequency. With several renewable energy sources, wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature. Whenever there is a mismatch between generation and demand, the frequency deviation may arise from the actual frequency 50 Hz (in India). To mitigate the frequency deviation issue, it is necessary to develop an effective technique for better frequency control in wind energy systems. In this work, heuristic Fuzzy Logic Based Controller… More >

  • Open Access

    ARTICLE

    An Optimized Algorithm for Renewable Energy Forecasting Based on Machine Learning

    Ziad M. Ali1,2,*, Ahmed M. Galal1,3, Salem Alkhalaf4, Imran Khan5

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 755-767, 2023, DOI:10.32604/iasc.2023.027568 - 06 June 2022

    Abstract The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids and energy management on the load side. Microgrid can effectively solve this problem by using its regulation and flexibility, and is considered to be an ideal platform. The traditional method of computing total transfer capability is difficult due to the central integration of wind farms. As a result, the differential evolution extreme learning machine is offered as a data mining approach for extracting operating rules for the total transfer capability of tie-lines in wind-integrated power systems.… More >

  • Open Access

    ARTICLE

    Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model

    Yunlei Zhang1, Ruifeng Cao1, Danhuang Dong2, Sha Peng3,*, Ruoyun Du3, Xiaomin Xu3

    Energy Engineering, Vol.119, No.5, pp. 1829-1841, 2022, DOI:10.32604/ee.2022.020118 - 21 July 2022

    Abstract In the electricity market, fluctuations in real-time prices are unstable, and changes in short-term load are determined by many factors. By studying the timing of charging and discharging, as well as the economic benefits of energy storage in the process of participating in the power market, this paper takes energy storage scheduling as merely one factor affecting short-term power load, which affects short-term load time series along with time-of-use price, holidays, and temperature. A deep learning network is used to predict the short-term load, a convolutional neural network (CNN) is used to extract the features, More >

  • Open Access

    ARTICLE

    Incremental Learning Model for Load Forecasting without Training Sample

    Charnon Chupong, Boonyang Plangklang*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5415-5427, 2022, DOI:10.32604/cmc.2022.028416 - 21 April 2022

    Abstract This article presents hourly load forecasting by using an incremental learning model called Online Sequential Extreme Learning Machine (OS-ELM), which can learn and adapt automatically according to new arrival input. However, the use of OS-ELM requires a sufficient amount of initial training sample data, which makes OS-ELM inoperable if sufficiently accurate sample data cannot be obtained. To solve this problem, a synthesis of the initial training sample is proposed. The synthesis of the initial sample is achieved by taking the first data received at the start of working and adding random noises to that data More >

  • Open Access

    ARTICLE

    Week Ahead Electricity Power and Price Forecasting Using Improved DenseNet-121 Method

    Muhammad Irfan1, Ali Raza2,*, Faisal Althobiani3, Nasir Ayub4,5, Muhammad Idrees6, Zain Ali7, Kashif Rizwan4, Abdullah Saeed Alwadie1, Saleh Mohammed Ghonaim3, Hesham Abdushkour3, Saifur Rahman1, Omar Alshorman1, Samar Alqhtani8

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4249-4265, 2022, DOI:10.32604/cmc.2022.025863 - 21 April 2022

    Abstract In the Smart Grid (SG) residential environment, consumers change their power consumption routine according to the price and incentives announced by the utility, which causes the prices to deviate from the initial pattern. Thereby, electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability. Due to the massive amount of data, big data analytics for forecasting becomes a hot topic in the SG domain. In this paper, the changing and non-linearity of consumer consumption pattern complex data is taken as input. To minimize the computational cost and… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Predictive Model for P2P Energy Trading in TEM

    Pudi Sekhar1, T. J. Benedict Jose2, Velmurugan Subbiah Parvathy3, E. Laxmi Lydia4, Seifedine Kadry5, Kuntha Pin6, Yunyoung Nam7,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1473-1487, 2022, DOI:10.32604/cmc.2022.022110 - 03 November 2021

    Abstract With the incorporation of distributed energy systems in the electric grid, transactive energy market (TEM) has become popular in balancing the demand as well as supply adaptively over the grid. The classical grid can be updated to the smart grid by the integration of Information and Communication Technology (ICT) over the grids. The TEM allows the Peer-to-Peer (P2P) energy trading in the grid that effectually connects the consumer and prosumer to trade energy among them. At the same time, there is a need to predict the load for effectual P2P energy trading and can be… More >

Displaying 11-20 on page 2 of 26. Per Page