Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (682)
  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 08 January 2026

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    A Micromechanics-Based Softening Hyperelastic Model for Granular Materials: Multiscale Insights into Strain Localization and Softening

    Chenxi Xiu1,2,*, Xihua Chu2, Ao Mei1, Liangfei Gong1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-39, 2026, DOI:10.32604/cmc.2025.073193 - 09 December 2025

    Abstract Granular materials exhibit complex macroscopic mechanical behaviors closely related to their micro-scale microstructural features. Traditional macroscopic phenomenological elasto-plastic models, however, usually have complex formulations and lack explicit relations to these microstructural features. To avoid these limitations, this study proposes a micromechanics-based softening hyperelastic model for granular materials, integrating softening hyperelasticity with microstructural insights to capture strain softening, critical state, and strain localization behaviors. The model has two key advantages: (1) a clear conceptualization, straightforward formulation, and ease of numerical implementation (via Abaqus UMAT subroutine in this study); (2) explicit incorporation of micro-scale features (e.g., contact… More >

  • Open Access

    ARTICLE

    Semi-Fragile Image Watermarking Using Quantization-Based DCT for Tamper Localization

    Agit Amrullah, Ferda Ernawan*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069229 - 09 December 2025

    Abstract This paper proposes a tamper detection technique for semi-fragile watermarking using Quantization-based Discrete Cosine Transform (DCT) for tamper localization. In this study, the proposed embedding strategy is investigated by experimental tests over the diagonal order of the DCT coefficients. The cover image is divided into non-overlapping blocks of size 8 × 8 pixels. The DCT is applied to each block, and the coefficients are arranged using a zig-zag pattern within the block. In this study, the low-frequency coefficients are selected to examine the impact of the imperceptibility score and tamper detection accuracy. High accuracy of… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    A Synthetic Speech Detection Model Combining Local-Global Dependency

    Jiahui Song, Yuepeng Zhang, Wenhao Yuan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069918 - 10 November 2025

    Abstract Synthetic speech detection is an essential task in the field of voice security, aimed at identifying deceptive voice attacks generated by text-to-speech (TTS) systems or voice conversion (VC) systems. In this paper, we propose a synthetic speech detection model called TFTransformer, which integrates both local and global features to enhance detection capabilities by effectively modeling local and global dependencies. Structurally, the model is divided into two main components: a front-end and a back-end. The front-end of the model uses a combination of SincLayer and two-dimensional (2D) convolution to extract high-level feature maps (HFM) containing local… More >

  • Open Access

    ARTICLE

    A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization

    Zhao Li1, Hongyu Xu1,*, Shuai Zhang2, Jintao Cui1, Xiaofeng Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068763 - 10 November 2025

    Abstract The moving morphable component (MMC) topology optimization method, as a typical explicit topology optimization method, has been widely concerned. In the MMC topology optimization framework, the surrogate material model is mainly used for finite element analysis at present, and the effectiveness of the surrogate material model has been fully confirmed. However, there are some accuracy problems when dealing with boundary elements using the surrogate material model, which will affect the topology optimization results. In this study, a boundary element reconstruction (BER) model is proposed based on the surrogate material model under the MMC topology optimization… More >

  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

  • Open Access

    ARTICLE

    Genetic Mapping of Grain Length-and Width-Related Genes in the Local Wheat Variety Guizi 1×Zhongyan 96-3 Hybrid Population Using Genome Sequencing

    Shaoyan Wu1,2, Jie Tian1,2, Yiyan Wang1,2, Muhammad Arif1,2, Shuyao Wang1,2, Jing Wang1,2, Zhuoyao Yang1,2, Ruhong Xu1,2,*, Luhua Li1,2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3913-3924, 2025, DOI:10.32604/phyton.2025.072229 - 29 December 2025

    Abstract Wheat grain morphology, particularly grain length (GL) and width (GW), is a key determinant of yield. To improve the suboptimal grain dimensions of the local anthocyanin-rich variety Guizi 1 (GZ1), we crossed it with Zhongyan 96-3 (ZY96-3), an elite germplasm known for faster grain filling and superior grain size. A genotyping-by-sequencing (GBS) approach was applied to an F2 population of 110 individuals derived from GZ1 × ZY96-3, resulting in the identification of 23,134 high-quality SNPs. Most of the SNPs associated with GL and GW were clustered on chromosomes 2B, 3A, and 3B. QTL mapping for GL… More >

  • Open Access

    ARTICLE

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

    Rıdvan Yayla, Hakan Üçgün*, Onur Ali Korkmaz

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4055-4087, 2025, DOI:10.32604/cmes.2025.072703 - 23 December 2025

    Abstract Recent advancements in autonomous vehicle technologies are transforming intelligent transportation systems. Artificial intelligence enables real-time sensing, decision-making, and control on embedded platforms with improved efficiency. This study presents the design and implementation of an autonomous radio-controlled (RC) vehicle prototype capable of lane line detection, obstacle avoidance, and navigation through dynamic path planning. The system integrates image processing and ultrasonic sensing, utilizing Raspberry Pi for vision-based tasks and Arduino Nano for real-time control. Lane line detection is achieved through conventional image processing techniques, providing the basis for local path generation, while traffic sign classification employs a… More > Graphic Abstract

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

  • Open Access

    ARTICLE

    Cross-Site Map-Free Indoor Localization for 6G ISAC Systems Using Low-Frequency Radio and Transformer Networks

    Bin Zhang1, En-Cheng Liou2,*, Yi-Chih Tung3, Muhammad Usman2,4, Chiung-An Chen2,4, Chao-Shun Yang2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2551-2571, 2025, DOI:10.32604/cmes.2025.072471 - 26 November 2025

    Abstract Indoor localization is a fundamental requirement for future 6G Intelligent Sensing and Communication (ISAC) systems, enabling precise navigation in environments where Global Positioning System (GPS) signals are unavailable. Existing methods, such as map-based navigation or site-specific fingerprinting, often require intensive data collection and lack generalization capability across different buildings, thereby limiting scalability. This study proposes a cross-site, map-free indoor localization framework that uses low-frequency sub-1 GHz radio signals and a Transformer-based neural network for robust positioning without prior environmental knowledge. The Transformer’s self-attention mechanisms allow it to capture spatial correlations among anchor nodes, facilitating accurate… More >

Displaying 1-10 on page 1 of 682. Per Page