Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    An Integrated Attention-BiLSTM Approach for Probabilistic Remaining Useful Life Prediction

    Bo Zhu#, Enzhi Dong#, Zhonghua Cheng*, Kexin Jiang, Chiming Guo, Shuai Yue

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074009 - 10 February 2026

    Abstract Accurate prediction of remaining useful life serves as a reliable basis for maintenance strategies, effectively reducing both the frequency of failures and associated costs. As a core component of PHM, RUL prediction plays a crucial role in preventing equipment failures and optimizing maintenance decision-making. However, deep learning models often falter when processing raw, noisy temporal signals, fail to quantify prediction uncertainty, and face challenges in effectively capturing the nonlinear dynamics of equipment degradation. To address these issues, this study proposes a novel deep learning framework. First, a new bidirectional long short-term memory network integrated with More >

  • Open Access

    ARTICLE

    The Missing Data Recovery Method Based on Improved GAN

    Su Zhang1, Song Deng1,*, Qingsheng Liu2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072777 - 10 February 2026

    Abstract Accurate and reliable power system data are fundamental for critical operations such as grid monitoring, fault diagnosis, and load forecasting, underpinned by increasing intelligentization and digitalization. However, data loss and anomalies frequently compromise data integrity in practical settings, significantly impacting system operational efficiency and security. Most existing data recovery methods require complete datasets for training, leading to substantial data and computational demands and limited generalization. To address these limitations, this study proposes a missing data imputation model based on an improved Generative Adversarial Network (BAC-GAN). Within the BAC-GAN framework, the generator utilizes Bidirectional Long Short-Term… More >

  • Open Access

    ARTICLE

    Intelligent Human Interaction Recognition with Multi-Modal Feature Extraction and Bidirectional LSTM

    Muhammad Hamdan Azhar1,2,#, Yanfeng Wu1,#, Nouf Abdullah Almujally3, Shuaa S. Alharbi4, Asaad Algarni5, Ahmad Jalal2,6, Hui Liu1,7,8,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071988 - 10 February 2026

    Abstract Recognizing human interactions in RGB videos is a critical task in computer vision, with applications in video surveillance. Existing deep learning-based architectures have achieved strong results, but are computationally intensive, sensitive to video resolution changes and often fail in crowded scenes. We propose a novel hybrid system that is computationally efficient, robust to degraded video quality and able to filter out irrelevant individuals, making it suitable for real-life use. The system leverages multi-modal handcrafted features for interaction representation and a deep learning classifier for capturing complex dependencies. Using Mask R-CNN and YOLO11-Pose, we extract grayscale… More >

  • Open Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026

    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Optimized VMD and LSTM

    Xinjian Li1, Yu Zhang1,2,*, Zewen Wang1, Zhenyun Song1

    Energy Engineering, Vol.122, No.11, pp. 4603-4619, 2025, DOI:10.32604/ee.2025.065799 - 27 October 2025

    Abstract Power prediction has been critical in large-scale wind power grid connections. However, traditional wind power prediction methods have long suffered from problems, for instance low prediction accuracy and poor reliability. For this purpose, a hybrid prediction model (VMD-LSTM-Attention) has been proposed, which integrates the variational modal decomposition (VMD), the long short-term memory (LSTM), and the attention mechanism (Attention), and has been optimized by improved dung beetle optimization algorithm (IDBO). Firstly, the algorithm’s performance has been significantly enhanced through the implementation of three key strategies, namely the elite group strategy of the Logistic-Tent map, the nonlinear… More >

  • Open Access

    ARTICLE

    Ultrashort-Term Power Prediction of Distributed Photovoltaic Based on Variational Mode Decomposition and Channel Attention Mechanism

    Zhebin Sun1, Wei Wang1, Mingxuan Du2, Tao Liang1, Yang Liu1, Hailong Fan3, Cuiping Li2, Xingxu Zhu2, Junhui Li2,*

    Energy Engineering, Vol.122, No.6, pp. 2155-2175, 2025, DOI:10.32604/ee.2025.062218 - 29 May 2025

    Abstract Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation. This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition (VMD) and Channel Attention Mechanism. First, Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power. Second, the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition (VMD). Finally, the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM… More >

  • Open Access

    ARTICLE

    Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network

    Yongfeng Tai1, Xingyu Yan2, Xiangyi Geng3, Lin Mu4, Mingshun Jiang2, Faye Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 365-383, 2025, DOI:10.32604/sdhm.2024.053998 - 15 January 2025

    Abstract The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee. In engineering scenarios, only a small amount of bearing performance degradation data can be obtained through accelerated life testing. In the absence of lifetime data, the hidden long-term correlation between performance degradation data is challenging to mine effectively, which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method. To address this problem, a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed. Firstly,… More >

  • Open Access

    ARTICLE

    Pressure Classification Analysis on CNN-Transformer-LSTM Hybrid Model

    Peng Xia1, Wu Zeng2,*, Yin Ni1, Ye Jin3

    Journal on Artificial Intelligence, Vol.6, pp. 361-377, 2024, DOI:10.32604/jai.2024.059114 - 13 December 2024

    Abstract Stress is defined as a subjective reflection of an internal psychological state of tension or arousal, manifesting as an interpretive, emotional, and defensive coping process within the body. Prolonged and sustained stress can significantly increase the risk of psychological and physiological disorders. Heart rate variability (HRV) is a key biomarker for assessing autonomic cardiac function, typically increasing during relaxation and decreasing under stress. Although measuring stress through physiological parameters like HRV is a common approach, achieving ultra-high accuracy based on HRV measurements remains a challenging task. In this study, the role of HRV features as… More >

  • Open Access

    ARTICLE

    An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM

    Futai Liang1,2, Xin Chen1,*, Song He1, Zihao Song1, Hao Lu3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1101-1121, 2024, DOI:10.32604/cmc.2024.055326 - 15 October 2024

    Abstract In the application of aerial target recognition, on the one hand, the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise. On the other hand, it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples. Aiming at these problems, an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network (LSTM) is proposed. LSTM can effectively extract temporal dependencies. The attention mechanism calculates the weight of each input element and… More >

  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903 - 20 June 2024

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

Displaying 1-10 on page 1 of 21. Per Page