Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has been formed by Enhanced Wolf… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification on Digital Mammograms

    Manar Ahmed Hamza*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2879-2895, 2023, DOI:10.32604/iasc.2023.034719

    Abstract Breast Cancer (BC) is considered the most commonly scrutinized cancer in women worldwide, affecting one in eight women in a lifetime. Mammography screening becomes one such standard method that is helpful in identifying suspicious masses’ malignancy of BC at an initial level. However, the prior identification of masses in mammograms was still challenging for extremely dense and dense breast categories and needs an effective and automatic mechanisms for helping radiotherapists in diagnosis. Deep learning (DL) techniques were broadly utilized for medical imaging applications, particularly breast mass classification. The advancements in the DL field paved the way for highly intellectual and… More >

  • Open Access

    ARTICLE

    Simply Fine-Tuned Deep Learning-Based Classification for Breast Cancer with Mammograms

    Vicky Mudeng1,2, Jin-woo Jeong3, Se-woon Choe1,4,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4677-4693, 2022, DOI:10.32604/cmc.2022.031046

    Abstract A lump growing in the breast may be referred to as a breast mass related to the tumor. However, not all tumors are cancerous or malignant. Breast masses can cause discomfort and pain, depending on the size and texture of the breast. With an appropriate diagnosis, non-cancerous breast masses can be diagnosed earlier to prevent their cultivation from being malignant. With the development of the artificial neural network, the deep discriminative model, such as a convolutional neural network, may evaluate the breast lesion to distinguish benign and malignant cancers from mammogram breast masses images. This work accomplished breast masses classification… More >

  • Open Access

    ARTICLE

    LBP–Bilateral Based Feature Fusion for Breast Cancer Diagnosis

    Yassir Edrees Almalki1, Maida Khalid2, Sharifa Khalid Alduraibi3, Qudsia Yousaf2, Maryam Zaffar2, Shoayea Mohessen Almutiri4, Muhammad Irfan5, Mohammad Abd Alkhalik Basha6, Alaa Khalid Alduraibi3, Abdulrahman Manaa Alamri7, Khalaf Alshamrani8, Hassan A. Alshamrani8,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4103-4121, 2022, DOI:10.32604/cmc.2022.029039

    Abstract Since reporting cases of breast cancer are on the rise all over the world. Especially in regions such as Pakistan, Saudi Arabia, and the United States. Efficient methods for the early detection and diagnosis of breast cancer are needed. The usual diagnosis procedures followed by physicians has been updated with modern diagnostic approaches that include computer-aided support for better accuracy. Machine learning based practices has increased the accuracy and efficiency of medical diagnosis, which has helped save lives of many patients. There is much research in the field of medical imaging diagnostics that can be applied to the variety of… More >

  • Open Access

    ARTICLE

    CAD of BCD from Thermal Mammogram Images Using Machine Learning

    D. Banumathy1,*, Osamah Ibrahim Khalaf2, Carlos Andrés Tavera Romero3, J. Indra4, Dilip Kumar Sharma5

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 667-685, 2022, DOI:10.32604/iasc.2022.025609

    Abstract Lump in the breast, discharge of blood from the nipple, and deformation of the nipple/breast and its texture are the symptoms of breast cancer. Though breast cancer is very common in women, men can also get breast cancer. In the early stages, BCD makes use of Thermal Mammograms Breast Images (TMBI). The cost of treatment can be severely reduced in the early stages of detection. Based on the techniques of segmentation, the Breast Cancer Detection (BCD) works. Moreover, by providing a balanced, reliable and appropriate second opinion, a tremendous role has been played by ML in medical practices due to… More >

  • Open Access

    ARTICLE

    Cognitive Computing-Based Mammographic Image Classification on an Internet of Medical

    Romany F. Mansour1,*, Maha M. Althobaiti2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3945-3959, 2022, DOI:10.32604/cmc.2022.026515

    Abstract Recently, the Internet of Medical Things (IoMT) has become a research hotspot due to its various applicability in medical field. However, the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment, generating a massive quantity of healthcare data. In such cases, cognitive computing can be employed that uses many intelligent technologies–machine learning (ML), deep learning (DL), artificial intelligence (AI), natural language processing (NLP) and others–to comprehend data expansively. Furthermore, breast cancer (BC) has been found to be a major cause of mortality among ladies globally. Earlier… More >

  • Open Access

    ARTICLE

    Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images

    José Escorcia-Gutierrez1,*, Romany F. Mansour2, Kelvin Beleño3, Javier Jiménez-Cabas4, Meglys Pérez1, Natasha Madera1, Kevin Velasquez1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4221-4235, 2022, DOI:10.32604/cmc.2022.022322

    Abstract Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process. At the same time, breast cancer becomes the deadliest disease among women and can be detected by the use of different imaging techniques. Digital mammograms can be used for the earlier identification and diagnostic of breast cancer to minimize the death rate. But the proper identification of breast cancer has mainly relied on the mammography findings and results to increased false positives. For resolving the issues of false positives of breast cancer diagnosis, this paper presents an automated deep learning based breast cancer… More >

  • Open Access

    ARTICLE

    Modified Differential Box Counting in Breast Masses for Bioinformatics Applications

    S. Sathiya Devi1, S. Vidivelli2,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3049-3066, 2022, DOI:10.32604/cmc.2022.019917

    Abstract Breast cancer is one of the common invasive cancers and stands at second position for death after lung cancer. The present research work is useful in image processing for characterizing shape and gray-scale complexity. The proposed Modified Differential Box Counting (MDBC) extract Fractal features such as Fractal Dimension (FD), Lacunarity, and Succolarity for shape characterization. In traditional DBC method, the unreasonable results obtained when FD is computed for tumour regions with the same roughness of intensity surface but different gray-levels. The problem is overcome by the proposed MDBC method that uses box over counting and under counting that covers the… More >

  • Open Access

    ARTICLE

    Machine Learning Enabled Early Detection of Breast Cancer by Structural Analysis of Mammograms

    Mavra Mehmood1, Ember Ayub1, Fahad Ahmad1,6,*, Madallah Alruwaili2, Ziyad A. Alrowaili3, Saad Alanazi2, Mamoona Humayun2, Muhammad Rizwan1, Shahid Naseem4, Tahir Alyas5

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 641-657, 2021, DOI:10.32604/cmc.2021.013774

    Abstract Clinical image processing plays a significant role in healthcare systems and is currently a widely used methodology. In carcinogenic diseases, time is crucial; thus, an image’s accurate analysis can help treat disease at an early stage. Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are common types of malignancies that affect both women and men. The number of cases of DCIS and LCIS has increased every year since 2002, while it still takes a considerable amount of time to recommend a controlling technique. Image processing is a powerful technique to analyze preprocessed images to retrieve useful information… More >

Displaying 1-10 on page 1 of 9. Per Page