Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (545)
  • Open Access

    ARTICLE

    A Multi-Criteria Topology Optimization for Systematic Design of Compliant Mechanisms

    Zhen Luo1,2, Nong Zhang,1,3

    CMC-Computers, Materials & Continua, Vol.28, No.1, pp. 27-56, 2012, DOI:10.3970/cmc.2012.028.027

    Abstract This paper attempts to present a new multi-criteria topological optimization methodology for the systematic design of compliant micro-mechanisms. Instead of employing only the strain energy (SE) or the functional specifications such as mechanical efficiency (ME), in this study an alternative formulation representing multiple design requirements is included in the optimization to describe the performance of compliant mechanisms. In most conventional designs, SE is used to only measure the design requirement from the point of view of structures, while ME is usually applied to describe the mechanical performance of mechanisms. However, the design of a compliant mechanism is required to comprehensively… More >

  • Open Access

    ARTICLE

    An Improved Memory Cache Management Study Based on Spark

    Suzhen Wang1, Yanpiao Zhang1, Lu Zhang1, Ning Cao2, *, Chaoyi Pang3

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 415-431, 2018, DOI: 10.3970/cmc.2018.03716

    Abstract Spark is a fast unified analysis engine for big data and machine learning, in which the memory is a crucial resource. Resilient Distribution Datasets (RDDs) are parallel data structures that allow users explicitly persist intermediate results in memory or on disk, and each one can be divided into several partitions. During task execution, Spark automatically monitors cache usage on each node. And when there is a RDD that needs to be stored in the cache where the space is insufficient, the system would drop out old data partitions in a least recently used (LRU) fashion to release more space. However,… More >

  • Open Access

    ARTICLE

    Provably Secure APK Redevelopment Authorization Scheme in the Standard Model

    Daofeng Li1,3,*, Mingxing Luo2, Bowen Zhao1,3, Xiangdong Che4

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 447-465, 2018, DOI: 10.3970/cmc.2018.03692

    Abstract The secure issues of APK are very important in Android applications. In order to solve potential secure problems and copyrights issues in redevelopment of APK files, in this paper we propose a new APK redevelopment mechanism (APK-SAN). By exploring sanitizable signature technology, APK-SAN allows the original developer to authorize specified modifier who can redevelop the designated source code of APK files. Our scheme does not require interactions between the developer and modifiers. It can reduce the communication overhead and computational overhead for developers. Especially, the signature of redeveloped APK files is valid and maintains the copyrights. The proposed APK-SAN signature… More >

  • Open Access

    ARTICLE

    Thickness Effect of Nanocrystalline Layer on the Deformation Mechanism of Amorphous/Crystalline Multilayered Structure

    Wen-Jay Lee1,*, Yu-Chien Lo2, Anchen Yang3, Kuanpeng Chen3, Nan-Yow Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 293-304, 2019, DOI:10.32604/cmes.2019.06620

    Abstract Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials. In this work, molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure. The stress-strain relationship, local stress, local strain, and deformation mechanism are investigated. The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior. As the strain at the elastic region, the amorphous Cu64Zr36 layer dominates the mechanical behavior, leading the fact that Young’s modulus, first… More >

  • Open Access

    ARTICLE

    Improved Particle Swarm Optimization for Selection of Shield Tunneling Parameter Values

    Gongyu Hou1, Zhedong Xu1,*, Xin Liu1, Cong Jin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 317-337, 2019, DOI:10.31614/cmes.2019.04693

    Abstract This article proposes an exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values. According to the iteration changes and the range of inertia weight in particle swarm optimization algorithm (PSO), the inertia weight is adjusted by the form of exponential function. Meanwhile, the self-regulation mechanism of the immune system is combined with the PSO. 12 benchmark functions and the realistic cases of shield tunneling parameter value selection are utilized to demonstrate the feasibility and accuracy of the proposed EAIW-IPSO algorithm. Comparison with other improved PSO indicates… More >

  • Open Access

    ARTICLE

    Machining Parameters Optimization of Multi-Pass Face Milling Using a Chaotic Imperialist Competitive Algorithm with an Efficient Constraint-Handling Mechanism

    Yang Yang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 365-389, 2018, DOI: 10.31614/cmes.2018.03847

    Abstract The selection of machining parameters directly affects the production time, quality, cost, and other process performance measures for multi-pass milling. Optimization of machining parameters is of great significance. However, it is a nonlinear constrained optimization problem, which is very difficult to obtain satisfactory solutions by traditional optimization methods. A new optimization technique combined chaotic operator and imperialist competitive algorithm (ICA) is proposed to solve this problem. The ICA simulates the competition between the empires. It is a population-based meta-heuristic algorithm for unconstrained optimization problems. Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,… More >

  • Open Access

    ARTICLE

    Loose Gangues Backfill Body’s Acoustic Emissions Rules During Compaction Test: Based on Solid Backfill Mining

    Junmeng Li1, Yanli Huang1, Wenyue Qi1, Guoqiang Kong1, Tianqi Song1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 85-103, 2018, DOI:10.3970/cmes.2018.115.085

    Abstract In fully mechanized solid backfilling mining (FMSBM), the loose gangues backfill body (LGBB) that filled into the goaf becomes the main body of bearing the overburden load. The deformation resistance of LGBB is critical for controlling overburden movement and surface subsidence. During the process of load bearing, LGBB will experience grain crushing, which has a significant effect on its deformation resistance. Gangues block will be accompanied with obvious acoustic emissions (AE) features in process of slipping, flipping and damaging. Under confined compression test, monitoring the AE parameters of LGBB can reveal the impact mechanism of grain crushing on LGBB deformation.… More >

  • Open Access

    ARTICLE

    Research on Instability Mechanism and Type of Ore Pillar based on the Fold Catastrophe Theory

    Zhengzheng Cao1, Feng Du2,3,4, Zhenhua Li2, Qinting Wang1, Ping Xu1, Haixiao Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 275-293, 2017, DOI:10.3970/cmes.2017.113.287

    Abstract The stability of ore pillar in mine is essential for the safe and efficient mining. Based on the energy evolvement rule in ore pillar and roadway roof system, the roadway roof and ore pillar are treated as energy release body and energy dissipation body, respectively. Therefore, the double-block mechanical model is established with energy dissipation body and energy release body, and the energy mechanism of ore pillar instability is obtained, based on the fold catastrophe mathematical theory. The research result indicates that the dynamic instability of ore pillar is a physical instability problem caused by the strain softening property of… More >

  • Open Access

    ARTICLE

    Numerical Simulation of An Experienced Farmer Lifting Tubers of Cassava for Designing A Bionic Harvester

    Wang Yang1,2, Juanjuan Li1, Jian Yang1,3, Lin Wei4

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.6, pp. 471-491, 2015, DOI:10.3970/cmes.2015.104.471

    Abstract Harvesting is the most difficult and costly operation in cassava production. Currently, most cassava harvest still depends on manual tools. Effective mechanized harvesters are necessary to improve harvesting quality and reduce production cost. Therefore, it is very important to figure out key information for designing an effective tuber lifting system used in bionic “dig-pull” harvesters. A numerical simulation model of human-stem-tuber-soil system was developed to carry out numerical simulation of manually pulling tuber. Coupling algorithm of Lagrange and smoothed particle hydrodynamics (SPH) was used in the model. Lifting mechanism of experienced farmer was studied at a micro level. Influence of… More >

  • Open Access

    ARTICLE

    Multiscale Modeling of Collagen Fibril in Bone at Various Crosslink Densities: An Insight into Its Deformation Mechanisms

    S.M. Pradhan1, K.S.Katti1, D.R. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 181-201, 2014, DOI:10.3970/cmes.2014.098.181

    Abstract Multiscale modeling of collagen fibril is carried out by incorporating the material properties of collagen obtained from steered molecular dynamics into the finite element model of collagen fibril with inclusion of crosslinks. The results indicate that the nonbonded interactions between collagen and mineral contribute to the significant enhancement of the elastic modulus of collagen fibril at all the crosslink densities in both the low strain and high strain regimes. The crosslinks are found to play an important role in the mechanical response of collagen fibril, the enhancement in elastic modulus ranging from 5-11% for various crosslink densities compared to the… More >

Displaying 511-520 on page 52 of 545. Per Page