Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure

    Han Zhou1,2, Hongtao Xu1,2, Xinyue Chang1,2, Wei Zhang1,2, Heng Dong1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2295-2313, 2024, DOI:10.32604/cmc.2024.047754

    Abstract Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes. However, these methods often lack constraint information and overlook semantic consistency, limiting their performance. To address these issues, we present a novel approach for medical image registration called the Dual-VoxelMorph, featuring a dual-channel cross-constraint network. This innovative network utilizes both intensity and segmentation images, which share identical semantic information and feature representations. Two encoder-decoder structures calculate deformation fields for intensity and segmentation images, as generated by the dual-channel cross-constraint network. This design facilitates bidirectional communication between grayscale More >

  • Open Access

    ARTICLE

    Spinal Vertebral Fracture Detection and Fracture Level Assessment Based on Deep Learning

    Yuhang Wang1,*, Zhiqin He1, Qinmu Wu1, Tingsheng Lu2, Yu Tang1, Maoyun Zhu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1377-1398, 2024, DOI:10.32604/cmc.2024.047379

    Abstract This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’ diagnostic efficiency. Therefore, a deep-learning-based automated diagnostic system with multi-label segmentation is proposed to recognize the condition of vertebral fractures. The whole spine Computed Tomography (CT) image is segmented into the fracture, normal, and background using U-Net, and the fracture degree of each vertebra is evaluated (Genant semi-qualitative evaluation). The main work of this paper includes: First, based on the spatial configuration network (SCN) structure, U-Net is used instead of the SCN feature extraction network. The attention mechanism and… More >

  • Open Access

    ARTICLE

    DCFNet: An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation

    Chengzhang Zhu1,2, Renmao Zhang1, Yalong Xiao1,2,*, Beiji Zou1, Xian Chai1, Zhangzheng Yang1, Rong Hu3, Xuanchu Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1103-1128, 2024, DOI:10.32604/cmes.2024.048453

    Abstract Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis. Notably, most existing methods that combine the strengths of convolutional neural networks (CNNs) and Transformers have made significant progress. However, there are some limitations in the current integration of CNN and Transformer technology in two key aspects. Firstly, most methods either overlook or fail to fully incorporate the complementary nature between local and global features. Secondly, the significance of integrating the multi-scale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine… More >

  • Open Access

    ARTICLE

    Multimodality Medical Image Fusion Based on Pixel Significance with Edge-Preserving Processing for Clinical Applications

    Bhawna Goyal1, Ayush Dogra2, Dawa Chyophel Lepcha1, Rajesh Singh3, Hemant Sharma4, Ahmed Alkhayyat5, Manob Jyoti Saikia6,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4317-4342, 2024, DOI:10.32604/cmc.2024.047256

    Abstract Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis. It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases. However, recent image fusion techniques have encountered several challenges, including fusion artifacts, algorithm complexity, and high computing costs. To solve these problems, this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance. First,… More >

  • Open Access

    ARTICLE

    Secure Transmission of Compressed Medical Image Sequences on Communication Networks Using Motion Vector Watermarking

    Rafi Ullah1,*, Mohd Hilmi bin Hasan1, Sultan Daud Khan2, Mussadiq Abdul Rahim3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3283-3301, 2024, DOI:10.32604/cmc.2024.046305

    Abstract Medical imaging plays a key role within modern hospital management systems for diagnostic purposes. Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed, all while upholding image quality. Moreover, an increasing number of hospitals are embracing cloud computing for patient data storage, necessitating meticulous scrutiny of server security and privacy protocols. Nevertheless, considering the widespread availability of multimedia tools, the preservation of digital data integrity surpasses the significance of compression alone. In response to this concern, we propose a secure storage and transmission solution for compressed medical image sequences, such as… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability

    Mohamed Abdel-Basset1, Hossam Hawash1, Mohamed Abouhawwash2,3,*, S. S. Askar4, Alshaimaa A. Tantawy1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1171-1187, 2024, DOI:10.32604/cmc.2023.044425

    Abstract The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans. This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis. This paper proposes a novel deep learning approach, called Conformer Network, for explainable discrimination of viral pneumonia depending on the lung Region of Infections (ROI) within a single modality radiographic CT scan. Firstly, an efficient U-shaped transformer network is integrated for lung image segmentation. Then, a robust transfer learning technique is introduced… More >

  • Open Access

    ARTICLE

    ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules

    Lu Chen1,#, Huaqiang Chen2,#, Zhikai Pan7, Sheng Xu2, Guangsheng Lai2, Shuwen Chen2,5,6, Shuihua Wang3,8, Xiaodong Gu2,6,*, Yudong Zhang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 361-382, 2024, DOI:10.32604/cmes.2023.031229

    Abstract Aim: This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. Methods: A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model’s generalization ability. Third, we introduce strategies for augmenting… More >

  • Open Access

    ARTICLE

    A Novel Unsupervised MRI Synthetic CT Image Generation Framework with Registration Network

    Liwei Deng1, Henan Sun1, Jing Wang2, Sijuan Huang3, Xin Yang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2271-2287, 2023, DOI:10.32604/cmc.2023.039062

    Abstract In recent years, radiotherapy based only on Magnetic Resonance (MR) images has become a hot spot for radiotherapy planning research in the current medical field. However, functional computed tomography (CT) is still needed for dose calculation in the clinic. Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest, making radiotherapy based only on MR images possible. In this paper, we proposed a novel unsupervised image synthesis framework with registration networks. This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed… More >

  • Open Access

    ARTICLE

    Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System

    Nojood O Aljehane*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3109-3126, 2023, DOI:10.32604/csse.2023.038042

    Abstract Medical image analysis is an active research topic, with thousands of studies published in the past few years. Transfer learning (TL) including convolutional neural networks (CNNs) focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance. It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time. This study develops an Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System (ETSOTL-MIAS). The goal of the ETSOTL-MIAS technique lies in… More >

Displaying 1-10 on page 1 of 126. Per Page