Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (141)
  • Open Access

    ARTICLE

    MHD FREE CONVECTIVE FLOW PAST AN IMPULSIVELY MOVING VERTICAL PLATE WITH RAMPED HEAT FLUX THROUGH POROUS MEDIUM IN THE PRESENCE OF INCLINED MAGNETIC FIELD

    G. S. Setha,*, P. K. Mandala, A. J. Chamkhab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.23

    Abstract A theoretical investigation of unsteady hydromagnetic free convection flow with heat and mass transfer of a viscous, incompressible, electrically conducting, optically thick radiating and chemically reactive fluid near an impulsively moving vertical plate with ramped heat flux through fluid saturated porous medium in the presence of inclined magnetic field is carried out. Exact solutions of the governing equations for fluid velocity, fluid temperature and species concentration are obtained by Laplace transform technique. The expressions for the skin-friction, rate of mass transfer at the plate and plate temperature are also derived. Numerical results for fluid velocity, fluid temperature and species concentration… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF THERMAL RADIATION AND NON-UNIFORM HEAT SOURCE/SINK ON STRETCHING SHEET EMBEDDED IN NON-DARCIAN POROUS MEDIUM

    Wubshet Ibrahima,∗, Bandari Shankarb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.37

    Abstract The Numerical analysis of magneto-hydrodynamics (MHD) boundary layer flow and heat transfer of incompressible, viscous and electrically conducting fluid is presented. The flow is due to continuously stretching permeable surface embedded in non-Darcian porous medium in the presence of transverse magnetic field, thermal radiation and non-uniform heat source/sink. The flow equations in the porous medium are governed by ForchheimerBrinkman extended Darcy model. A similarity transformation is used to transform partial differential equations into a coupled higher order non-linear ordinary differential equations. These equations are solved numerically using implicit finite difference scheme called Keller-Box method. The effects of the governing parameters… More >

  • Open Access

    ARTICLE

    FORCED CONVECTION BOUNDARY LAYER STAGNATION-POINT FLOW IN DARCY-FORCHHEIMER POROUS MEDIUM PAST A SHRINKING SHEET

    Shahirah Abu Bakara, Norihan Md. Arifina,*, Roslinda Nazarb, Fadzilah Md. Alia, Ioan Popc

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.38

    Abstract A mathematical model of forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium over a shrinking sheet is presentedin this paper. The governing partial differential equations are transformed into ordinary differential equation using self-similarity transformation which are then solved numerically with shooting method. A parametric study of the physical parameters involved in the problem is conducted and representative set of numerical results are presented through graphs and tables, and are discussed. More >

  • Open Access

    ARTICLE

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

    Qingyun Zeng1,2, Mingxin Zheng1,*, Dan Huang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2981-3005, 2023, DOI:10.32604/fdmp.2023.029427

    Abstract A complex interface exists between water flow and solid particles during hydraulic soil erosion. In this study, the particle discrete element method (DEM) has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes. Moreover, the weakly compressible smoothed particle hydrodynamics (WCSPH) approach has been exploited to simulate the instability process of the free surface fluid and its propagation characteristics at the solid–liquid interface. The influence of a suspended medium on the water flow dynamics has been characterized using the mixed viscosity concept accounting for the solid–liquid mixed particle volume ratio.… More > Graphic Abstract

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation. The ODEs are dealt with… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CONVECTIVE BOUNDARY CONDITION ON NONLINEAR THERMAL CONVECTION FLOW OF A MICROPOLAR FLUID SATURATED POROUS MEDIUM WITH HOMOGENEOUS-HETEROGENEOUS REACTIONS

    Chetteti RamReddya,†, Teegala Pradeepaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.6

    Abstract A numerical approach has been used to analyze the effects of homogeneous-heterogeneous reaction and nonlinear density temperature variation over a vertical plate in an incompressible micropolar fluid flow saturated Darcy porous medium. In addition, convective boundary condition is incorporated in a micropolar fluid model. The similarity representation for the set of partial differential equations is attained by applying Lie group transformations. The resulting non-dimensional equations are worked out numerically by spectral quasi-linearization method. Less temperature and wall couple stress coefficient, but more velocity, skin friction, species concentration, and heat transfer rate are noticed by enhancing the nonlinear convection parameter. It… More >

  • Open Access

    ARTICLE

    EFFECTS OF HOMOGENEOUS-HETEROGENEOUS CHEMICAL REACTION AND SLIP VELOCITY ON MHD STAGNATION FLOW OF A MICROPOLAR FLUID OVER A PERMEABLE STRETCHING/SHRINKING SURFACE EMBEDDED IN A POROUS MEDIUM

    P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.24

    Abstract We report on a mathematical model for analyzing the effects of homogeneous-heterogeneous chemical reaction and slip velocity on the MHD stagnation point flow of electrically conducting micropolar fluid over a stretching/shrinking surface embedded in a porous medium. The governing boundary layer coupled partial differential equations are transformed into a system of non-linear ordinary differential equations, which are solved numerically using the MATLAB bvp4c solver. The effects of physical and fluid parameters such as the stretching parameter, micropolar parameter, permeability parameter, strength of homogeneous and heterogeneous reaction parameter on the velocity and concentration are analyzed, and these results are presented through… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION OF UNSTEADY RADIATIVE CASSON FLUID FLOW THROUGH POROUS MEDIUM OVER A PERMEABLE STRETCHING SURFACE WITH INCLINED MAGNETIC FIELD

    Shalini Jain*, Amit Parmar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.40

    Abstract Present paper aims to investigate entropy generation of unsteady radiative Casson fluid flow through porous medium over a permeable stretching surface with inclined magnetic field. Time-dependent partial differential equations are transformed into non-linear ordinary differential equations using similarity transformations. These transformed equations are solved numerically by Runge–Kutta fourth-order with shooting technique. The effects of pertinent parameter such as magnetic field parameter, Casson fluid parameter, inclined angle of magnetic field parameter, Radiation parameter and Reynolds number on the velocity, temperature and entropy profiles are presented graphically. Local Nusselt and local Sherwood number are also obtained and presented in tabulated form. More >

  • Open Access

    ARTICLE

    SCALING GROUP TRANSFORMATION FOR MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH EFFECTS OF SORET, RADIATION AND VARIABLE PROPERTIES

    J. Pranithaa,* , G. Venkata Sumana , D. Srinivasacharyaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.39

    Abstract An analysis is performed to investigate the influence of radiation, thermal-diffusion and variable properties on mixed convection flow, heat and mass transfer from a vertical plate in a porous medium saturated with a power-law fluid. The non-linear partial differential equations are reduced to ordinary differential equations by implementing Lie scaling group transformations. These ordinary differential equations are solved numerically by implementing a shooting technique. The numerical results for dimensionless velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids are presented graphically for different values of variable viscosity, variable thermal conductivity, Soret and radiation parameters. Heat and mass transfer… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ON MHD NANOFLUID FLOW OVER A SEMI INFINITE FLAT PLATE EMBEDDED IN A POROUS MEDIUM WITH RADIATION ABSORPTION, HEAT SOURCE AND DIFFUSION THERMO EFFECT

    N. Vedavathia , G. Dharmaiahb,* , K.S. Balamuruganc, J. Prakashd

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.38

    Abstract The effects of radiation absorption, first order chemical reaction and diffusion thermo on MHD free convective heat and mass transfer flow of a nanofluid past a semi infinite vertical flat plate are analyzed. The temperature and concentration at the surface are assumed to be oscillatory type. Four types of cubic nano particles which are uniform and size namely, Silver (Ag), Aluminum (Al2O3), Copper (Cu) and Titanium Oxide (TiO2) with water as a base fluid is taken into account. The set of ordinary differential equations are solved by using regular perturbation technique. The impact of various flow parameters on nanofluid velocity,… More >

Displaying 21-30 on page 3 of 141. Per Page