Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Application of Submerged Ultrafiltration in Pretreatment of Flue Gas Desulfurization Wastewater

    Jiageng Zhang1, Zhengfeng Wang2, Jiguang Huang1, Chao Cheng1, Heng Zhang1, Dan Gao1,*

    Energy Engineering, Vol.119, No.6, pp. 2277-2296, 2022, DOI:10.32604/ee.2022.020795 - 14 September 2022

    Abstract

    Nowadays, the zero liquid discharge of flue gas desulfurization (FGD) wastewater from coal-fired units has attracted the attention of all countries in the world. The pretreatment methods generally have the problems of high operation cost, small treatment capacity, and poor flexibility. However, the membrane method can avoid the above problems. In the current research, it has not been found that someone directly uses submerged ultrafiltration to pretreat FGD wastewater. Therefore, this paper innovatively proposed to directly use ceramic ultrafiltration membrane to treat FGD wastewater, which can ensure effluent quality and improve the flexibility of the pretreatment

    More >

  • Open Access

    ARTICLE

    The characterization of transmembrane protein 59-like (TMEM59L) reveals its role in the regulating the level of the GDI protein family

    HAIFENG WANG1,2,*, JUAN GUO1, TIEQIAO WEN2,*

    BIOCELL, Vol.46, No.12, pp. 2615-2624, 2022, DOI:10.32604/biocell.2022.021247 - 10 August 2022

    Abstract The characterization and functions of transmembrane protein 59-like (TMEM59L), a type I transmembrane protein, are not clearly understood until now. Some TMEM59L and fluorescent fusion proteins constructs were transfected in cell lines and liposomes, and their localization was observed. The effects of protein constructs were studied by fluorescence microscopy and western blotting. This study reports a novel function of human TMEM59L (hTMEM59L) related to the expression and location of some proteins. In addition, we report two novel splice variants of human TMEM59L (hTMEM59L). The localization of mutants of this protein, lacking a middle region, and… More >

  • Open Access

    ARTICLE

    Characterization of Nanocomposite Membrane Based Bacterial Cellulose Made of Pineapple Waste Reinforced by Graphite Nanoplatelets

    Heru Suryanto1,2,*, Bili Darnanto Susilo3, Jibril Maulana3, Aminnudin3, Uun Yanuhar4, Surjani Wonorahardjo2,5, Husni Wahyu Wijaya2,5, Abu Saad Ansari6

    Journal of Renewable Materials, Vol.10, No.9, pp. 2455-2465, 2022, DOI:10.32604/jrm.2022.020478 - 30 May 2022

    Abstract Waste is the main problem for the environment. Handling waste for various useful applications has a benefit for the future. This work has been studied for handling pineapple peel waste to make composite film bacterial cellulose nanocomposite membrane (BCNM) with addition graphite nanoplatelet (GNP). The concentration of GNP in the membrane influence the membrane properties. The bacterial cellulose (BC) pellicle was synthesized by using media from pineapple peel waste extract. BC pellicle is cleaned with water and NaOH solution to be free from impactors. BCNM is synthesized through the mechanical disintegration stage. The results of… More > Graphic Abstract

    Characterization of Nanocomposite Membrane Based Bacterial Cellulose Made of Pineapple Waste Reinforced by Graphite Nanoplatelets

  • Open Access

    VIEWPOINT

    Dancing to a somewhat different rhythm: Cell migration along the natural basement membrane

    SHELDON R. GORDON*

    BIOCELL, Vol.46, No.9, pp. 2059-2063, 2022, DOI:10.32604/biocell.2022.019873 - 18 May 2022

    Abstract Much of our understanding of the events which underlie cell migration has been derived from studies of cells in tissue culture. One of the components that mediates this process is the dynamic actin-based microfilament system that can reorganize itself into so-called stress fibers that are considered essential components for cell motility. In contrast, relatively few studies have investigated cell movement along an extracellular matrix (ECM) which is known to influence both cellular organization and behavior. This opinion/viewpoint article briefly reviews cell migration during corneal endothelial wound repair along the tissue’s natural basement membrane, Descemet’s membrane. More >

  • Open Access

    VIEWPOINT

    Mechanobiology of the cell surface: Probing its remodeling dynamics using membrane tether pulling assays with optical tweezers

    JULIANA SOARES1,2,#, DOUGLAS G. FREITAS1,3,#, PEDRO S. LOURENÇO1,4, JEFTE FARIAS1,5, BRUNO PONTES1,2,3,4,5,*

    BIOCELL, Vol.46, No.9, pp. 2009-2013, 2022, DOI:10.32604/biocell.2022.019969 - 18 May 2022

    Abstract Mammalian cell surfaces consist of the plasma membrane supported by an underneath cortical cytoskeleton. Together, these structures can control not only the shape of cells but also a series of cellular functions ranging from migration and division to exocytosis, endocytosis and differentiation. Furthermore, the cell surface is capable of exerting and reacting to mechanical forces. Its viscoelastic properties, especially membrane tension and bending modulus, are fundamental parameters involved in these responses. This viewpoint summarizes our current knowledge on how to measure the viscoelastic properties of cell surfaces employing optical tweezers-based tether assays, paving the way More >

  • Open Access

    ARTICLE

    Numerical Analysis of Conjugated Heat and Mass Transfer of Helical Hollow Fiber Membrane Tube Bank for Seawater Distillation

    Tao Zeng1,3, Lisheng Deng1,3,*, Jiechao Chen2,*, Hongyu Huang1,3, Hanli Zhuang2

    Journal of Renewable Materials, Vol.10, No.7, pp. 1845-1858, 2022, DOI:10.32604/jrm.2022.018803 - 07 March 2022

    Abstract A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank (HFMTB) for seawater desalination was carried out. Physical and mathematical models of fluid flow, temperature and humidity distribution were constructed to investigate the influences of flow type, Reynolds number, and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module. The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient, Nusselt number (Nu), and Sherwood number (Sh). Results demonstrate that a distillation efficiency enhancement of 29% compared to the straight HFMTB… More >

  • Open Access

    VIEWPOINT

    Crosslinking-mediated activation of the FcεRI: Does it need antigen for success?

    MICHAEL HUBER*, SANDRO CAPELLMANN

    BIOCELL, Vol.46, No.5, pp. 1125-1129, 2022, DOI:10.32604/biocell.2022.018513 - 06 January 2022

    Abstract Mast cells (MCs), hematopoietic cells of the myeloid lineage, are well-known for their pro-inflammatory nature contributing to the development of various allergic and autoimmune diseases. One of the characteristic receptors on MCs, the high-affinity receptor for IgE (FcεRI), is activated in its IgE-bound state via binding and crosslinking by polyvalent antigen. This results in its phosphorylation by the SRC family kinase LYN, initiating differential signaling pathways, eventually triggering immunological effector functions, such as degranulation and cytokine production. Few publications have reported on FcεRI-dependent but antigen-independent MC activation by antibody-mediated crosslinking of membrane molecules (e.g., transmembrane More >

  • Open Access

    ARTICLE

    Experimental Study on the Performance of an Onboard Hollow-Fiber-Membrane Air Separation Module

    Yi Tu1, Yu Zeng2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 355-370, 2022, DOI:10.32604/fdmp.2022.018423 - 16 December 2021

    Abstract Onboard air separation devices, based on hollow fiber membranes, are traditionally used for the optimization of aircraft fuel tank inerting systems. In the present study, a set of tests have been designed and executed to assess the air separation performances of these systems for different air inlet temperatures (70°C∼110°C), inlet pressures (0.1∼0.4 MPa), volume flow rates of nitrogen-enriched air (NEA) (30∼120 L/min) and flight altitudes (1.5∼18 km). In particular, the temperature, pressure, volume flow rate, and oxygen concentration of air, NEA and oxygen-enriched air (OEA) have been measured. The experimental results show that the oxygen concentration of More >

  • Open Access

    ARTICLE

    Research on the Intelligent Control Strategy of the Fuel Cell Phase-Shifting Full-Bridge Power Electronics DC-DC Converter

    Lei Zhang1, Yinlong Yuan1,*, Yihe Sun2, Yun Cheng1, Dian Wu1, Lei Ren1

    Energy Engineering, Vol.119, No.1, pp. 387-405, 2022, DOI:10.32604/EE.2022.017463 - 22 November 2021

    Abstract With the aggravation of energy problems, the development and utilization of new energy has become the focus of all countries. As an effective new energy, the fuel cell has attracted the attention of scholars. However, due to the particularity of proton exchange membrane fuel cell (PEMFC), the performance of traditional PI controlled phase-shifted full-bridge power electronics DC-DC converter cannot meet the needs of practical application. In order to further improve the dynamic performance of the converter, this paper first introduces several main topologies of the current mainstream front-end DC-DC converter, and analyzes their performance in… More >

  • Open Access

    ARTICLE

    Effects of High-Temperature Stress on Photosynthetic Characteristics and Antioxidant Enzyme System of Paeonia ostii

    Xiaoxiao Wang1, Ziwen Fang1, Daqiu Zhao1, Jun Tao1,2,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.3, pp. 599-615, 2022, DOI:10.32604/phyton.2022.017881 - 26 October 2021

    Abstract

    Paeonia ostii is an economically important oil crop, which has been widely cultivated in the middle and lower reaches of the Yangtze River in China in recent years. Although P. ostii is highly adaptable to the environment, the prolonged high summer temperature in this region severely inhibits its growth, which adversely affects seed yield and quality. In this study, P. ostii plants were subjected to 20°C/15°C (day/night) and 40°C/35°C (day/night) temperatures for 15 days. The changes in physiological and biochemical indicators of P. ostii under high-temperature stress were initially investigated. The results showed that with the deepening of leaf

    More >

Displaying 31-40 on page 4 of 126. Per Page