Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell

    Yingli Zhu1,*, Jiachi Xie1, Mingwei Zhu1, Jun Zhang2, Miaomiao Li3

    Energy Engineering, Vol.121, No.5, pp. 1161-1172, 2024, DOI:10.32604/ee.2024.041205

    Abstract The open ratio of a current collector has a great impact on direct methanol fuel cell (DMFC) performance. Although a number of studies have investigated the influence of the open ratio of DMFC current collectors, far too little attention has been given to how geometry (including the shape and feature size of the flow field) affects a current collector with an equal open ratio. In this paper, perforated and parallel current collectors with an equal open ratio of 50% and different feature sizes are designed, and the corresponding experimental results are shown to explain the geometry effects on the output… More >

  • Open Access

    ARTICLE

    Effects of PEG200 on the Properties and Performance of PVDF Membranes in the Separation of MethanolWater Mixtures by Pervaporation

    DIPESHKUMAR D. KACHHADIYA, Z.V.P. MURTHY*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 49-61, 2021, DOI:10.32381/JPM.2021.38.1-2.5

    Abstract The conventional process for methanol-water separation like distillation consumes about 60 % of total energy. As an alternative, researchers have developed a membrane-based separation process for alcohol-water mixtures separation. However, there is a big challenge for researches to separate alcohol-water aqueous mixtures using a polymeric membrane because of swelling. In the present work, the aim is to separate methanol from water by pervaporation using polymeric membranes made up of polyvinylidenefluroide (PVDF) and polyethylene glycol (PEG200) modified PVDF membranes. The membranes were characterized by thermogravimetry analysis (TGA), field emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FTIR). A study on… More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage current is studied. The methanol… More >

  • Open Access

    ARTICLE

    Effect of Sulfuric Acid on the Physiochemical Properties of Chitosan-PVA Blend for Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb, PRAGYAN SENAPATIc, SWETAK ABHISEK MOHAPATRAb

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 89-109, 2022, DOI:10.32381/JPM.2022.39.1-2.6

    Abstract In this work, we have successfully cross-linked the different weight ratio of Chitosan-PVA blend with sulfuric acid. The effect of cross-linker on the properties of blends are studied by using different experimental technique. The cross-linked membrane provides higher ion exchange capacity due to the procurement of extra ionic hooping sites in the membrane. The compatibility of the blends are confirmed from the FTIR and DSC analysis. The crosslinking reaction fastening the phase transition behavior of the blends which reduces the glass transition temperature. The highly compatiblized cross-linked blend provides higher tensile strength and lower modulus at moderate temperature. The significant… More >

  • Open Access

    ARTICLE

    POOL BOILING CHF FOR PENTANE, HEXANE, METHANOL, FC-72, FC-87, AND R113 ON A SMOOTH HORIZONTAL SURFACE

    Cheng-Kang Guan, James F. Klausner*, Renwei Mei

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-6, 2011, DOI:10.5098/hmt.v2.4.3002

    Abstract Pool boiling critical heat flux (CHF) has been measured for pentane, hexane, methanol, FC-72, FC-87, and R113 on a 25.4 mm diameter smooth brass horizontal surface at five different reduced pressures ranging from 0.01to 0.24. The CHF data are compared with various established CHF models as well as the new mechanistic CHF lift-off model recently proposed by the authors. The dependence of CHF on pressure is examined, and it is found that the lift-off model gives a reasonably good prediction of changes in CHF with step changes in the reduced pressure. The R113 and FC-72 boiling curves suggest that a… More >

  • Open Access

    ARTICLE

    RECENT ADVANCES IN UNDERSTANDING OF MASS TRANSFER PHENOMENA IN DIRECT METHANOL FUEL CELLS OPERATING WITH CONCENTRATED FUEL

    Q.X. Wua, Y.L. Heb, T.S. Zhaoa,b,*

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-14, 2011, DOI:10.5098/hmt.v2.3.2001

    Abstract Running direct methanol fuel cells (DMFC) with concentrated fuel is desirable to maximize the specific energy of the fuel cell system and to improve the performance by mitigating the water flooding problem associated with diluted methanol operation. This article provides a comprehensive review of recent advances in understanding mass transport phenomena in DMFCs operating with concentrated fuel. The review starts with elaborating the key issues of mass transport of reactants and products associated with highly-concentrated methanol operation, followed by summarizing and discussing past experimental and numerical investigations into the effects of the membrane electrode assembly (MEA) design, flow field structure… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF HEAT TRANSPORT IN A DIRECT METHANOL FUEL CELL WITH ANISOTROPIC GAS DIFFUSION LAYERS

    Zheng Miaoa, Ya-Ling Hea,*, Tian-Shou Zhaob, Wen-Quan Taoa

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-10, 2011, DOI:10.5098/hmt.v2.1.3001

    Abstract A non-isothermal two-phase mass transport model is developed in this paper to investigate the heat generation and transport phenomena in a direct methanol fuel cell with anisotropic gas diffusion layers (GDLs). Thermal contact resistances at the GDL/CL (catalyst layer) and GDL/Rib interfaces, and the deformation of GDLs are considered together with the inherent anisotropy of the GDL. Latent heat effects due to condensation/evaporation of water and methanol between liquid and gas phases are also taken into account. Formulation of the two-phase mass transport across the membrane electrode assembly (MEA) is mainly based on the classical multiphase flow theory in the… More >

  • Open Access

    ARTICLE

    Test Research on the Knock of a Common-Rail Diesel Engine Fueled with Diesel-Methanol Dual-Fuel

    Chao Zhu1, Zhuopei Liu2, Hao Chen2,3, Yangyang Li2,3,*

    Energy Engineering, Vol.120, No.5, pp. 1081-1105, 2023, DOI:10.32604/ee.2023.026000

    Abstract Experiments were conducted on a diesel-methanol dual-fuel (DMDF) engine modified by a six-cylinder, turbo-charged, inter-cooled diesel engine. According to the number of diesel injection, the experiments are divided to two parts: the single injection mode and double injection mode. The results show that, at the double injection mode, the maximum of pressure rise rate is small and the engine runs smoothly, however, knock still occurs when the co-combustion ratio (CCR) is big enough. Under knock status, the power density of the block vibration concentrating at some special frequencies rises dramatically, and the special frequency of single injection mode (about 4.1… More >

  • Open Access

    ARTICLE

    On the Design and Optimization of a Clean and Efficient Combustion Mode for Internal Combustion Engines through a Computer NSGA-II Algorithm

    Xiaobin Shu, Miaomiao Ren*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 1019-1029, 2020, DOI:10.32604/fdmp.2020.09564

    Abstract In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines, a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics (CFD). Moreover, a Non-dominated Sorting Genetic Algorithm (NSGA-II) is applied to optimize the related parameters, namely, the engine methanol ratio, the fuel injection time, the initial temperature, the Exhaust Gas Re-Circulation (EGR) rate, and the initial pressure. The so-called Conventional Diesel Combustion (CDC), Homogeneous Charge Compression Ignition (HCCI) and the Reactivity Controlled Compression Ignition (RCCI) combustion modes are compared. The results show that… More >

  • Open Access

    ARTICLE

    Butein imparts free radical scavenging, anti-oxidative and proapoptotic properties in the flower extracts of Butea monosperma

    ANURADHA SEHRAWAT AND VIJAY KUMAR*

    BIOCELL, Vol.36, No.2, pp. 63-71, 2012, DOI:10.32604/biocell.2012.36.063

    Abstract The flower of Butea monosperma (Lam.) (Fabaceae) has been used in traditional Indian medicine in the treatment of many ailments including liver disorders. To understand the pharmacological basis of its beneficial effects, the extracts of dried flowers in water, methanol, butanol, ethyl acetate and acetone were evaluated for free radical scavenging and pro-apoptotic activities in cell cultures (human hepatoma Huh-7 cell line and immortalized AML-12 mouse hepatocytes). Butrin and butein -the active constituents of flower extracts- were used as reference molecules. The levels of cell injury markers like lactate dehydrogenase, glutathione and lipid peroxidation and primary antioxidant enzymes glutathione S-transferase… More >

Displaying 1-10 on page 1 of 13. Per Page