Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Production of Activated Biochar from Palm Kernel Shell for Methylene Blue Removal

    Sarina Sulaiman*, Muhammad Faris

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0105 - 23 January 2026

    Abstract In this study, Palm kernel shell (PKS) is utilized as a raw material to produce activated biochar as adsorbent for dye removal from wastewater, specifically methylene blue (MB) dye, by utilizing a simplified and cost-effective approach. Production of activated biochar was carried out using both a furnace and a domestic microwave oven without an inert atmosphere. Three samples of palm kernel shell (PKS) based activated biochar labeled as samples A, B and C were carbonized inside the furnace at 800°C for 1 h and then activated using the microwave-heating technique with varying heating times (0,… More >

  • Open Access

    ARTICLE

    Influence of heat treatment on microwave dielectric properties of erbium doped borotellurite glass ceramics

    S. Othmana, Y. H. Luab, E. S. Sazalia,, Y. S. Yapb,, R. Hisamc

    Chalcogenide Letters, Vol.22, No.5, pp. 451-459, 2025, DOI:10.15251/CL.2025.225.451

    Abstract High-performance glass-ceramics are increasingly explored for their suitability in high-frequency dielectric applications, presenting a significant challenge in materials science. A primary focus has been allocated to investigating borotellurite glasses operating at frequencies below 15 MHz. Borotellurite glasses with the composition 69TeO-10BO3-10PbO-10ZnO-1ErO3 were fabricated via the melt-quenching method. This study examines the effects of heat treatment durations (1–24 hours) on these glasses. Variations in density, molar volume, structure, and dielectric properties were attributed to changes in non-bridging oxygen bonding resulting from the heat treatments. X-ray diffraction analysis confirmed the amorphous nature of the as-quenched glass. Morphological changes More >

  • Open Access

    ARTICLE

    Tensoelectric properties of (BixSb1-x)2Te3 films under the influence of a microwave field

    R. U. Siddikov*, Kh. M. Sulaymonov, N. Kh. Yuldashev

    Chalcogenide Letters, Vol.22, No.10, pp. 855-862, 2025, DOI:10.15251/CL.2025.2210.855

    Abstract This paper presents the results of an experimental study of the tens metric and dielectric properties of polycrystalline (BixSb1-x)2Te3 films in the temperature range of 280−480 K and at microwave frequencies. The temperature dependences of the specific conductivity, impedance, and permittivity under the action of uniaxial static deformation are analyzed. The deformation phenomena detected in polycrystalline films under the action of a microwave field are qualitatively interpreted based on the effective medium theory. More >

  • Open Access

    ARTICLE

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

    Lailan Ni`mah1,*, Sri Rachmania Juliastuti2, Mahfud Mahfud2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2169-2190, 2025, DOI:10.32604/jrm.2025.02025-0044 - 24 November 2025

    Abstract This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste, an underutilized agricultural byproduct. Microwave-assisted production offers faster heating, lower energy consumption, and better process control compared to conventional methods. It also enhances pore development, resulting in larger, cleaner, and more uniform pores, making the activated carbon more effective for adsorption. The microwave-assisted process significantly accelerates production, reducing the required time to just 10 min at a power of 400 W. Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%, ash content of… More > Graphic Abstract

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

  • Open Access

    ARTICLE

    Infrared and Microwave Radiation Assisted Self-Healing Property of Exfoliated-Graphene Incorporated Styrene-Isoprene-Styrene Nanocomposites

    Shilpi Tiwari*, Manjari Srivastava, Dibyendu S. Bag*

    Journal of Polymer Materials, Vol.42, No.1, pp. 187-204, 2025, DOI:10.32604/jpm.2025.057322 - 27 March 2025

    Abstract Smart materials with self-healing properties are highly desired. This study investigates graphene-incorporated styrene-isoprene-styrene (SIS) nanocomposites for their self-healing property assisted by Infrared (IR) and microwave radiation. The good thermal conductivity and energy-absorbing capacity of graphene offer self-healing capability to SIS/GnP nanocomposites due to their exposure to IR and microwave radiation. The absorbed energy in graphene is transferred to the SIS matrix, facilitating the diffusion, re-entanglement, and restoration of the SIS polymer chains, resulting in multiple times self-healing capabilities using various external stimuli. All SIS/GnP nanocomposite samples exhibit self-healing behavior, and the healing efficiency rises with… More > Graphic Abstract

    Infrared and Microwave Radiation Assisted Self-Healing Property of Exfoliated-Graphene Incorporated Styrene-Isoprene-Styrene Nanocomposites

  • Open Access

    ARTICLE

    Influence of Microwave Power and Heating Time on the Drying Kinetics and Mechanical Properties of Eucalyptus gomphocephala Wood

    Mariam Habouria1, Sahbi Ouertani1,*, Noura Ben Mansour2, Soufien Azzouz1, Mohamed Taher Elaieb3

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 345-360, 2025, DOI:10.32604/fhmt.2024.057387 - 26 February 2025

    Abstract The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating (MWH) in two scenarios: intermittently and continuously. The mechanical properties and surface appearance of the heated samples were also investigated. Continuous and intermittent microwave drying kinetic experiments were conducted at a frequency of 2.45 GHz using a microwave laboratory oven at 300, 500, and 1000 watts. Drying rate curves indicated three distinct phases of MWH. Increasing the microwave power with a shorter drying time led to rapid increases in internal temperature and… More >

  • Open Access

    ARTICLE

    Microwave-Assisted Acetylated Lignin Loaded into Cellulose Acetate for Efficient UV-Shielding Films

    Ahmed M. Khalil1, Samir Kamel2,*

    Journal of Renewable Materials, Vol.13, No.2, pp. 401-412, 2025, DOI:10.32604/jrm.2024.057419 - 20 February 2025

    Abstract Developing favorable bio-based polymers that replace petroleum-based plastics is an essential environmental demand. Lignin is a by-product of the chemical pulping industry. It is a natural UV protection ingredient in broad-spectrum (UVA and UVB) sunscreens. It could be partially and selectively acetylated in a simple, fast, and more reliable process. In this work, a composite film was prepared with UV-resistant properties through a casting method. Bio-based cellulose acetate (CA) was employed as a major matrix while nano-acetylated kraft lignin (AL-NPs) was used as filler during synthesizing UV-shielding films loaded with various amounts (1–5 wt.%) of… More > Graphic Abstract

    Microwave-Assisted Acetylated Lignin Loaded into Cellulose Acetate for Efficient UV-Shielding Films

  • Open Access

    ARTICLE

    Why Sustainable Porous Carbon Should be Further Explored as Radar-Absorbing Material? A Comparative Study with Different Nanostructured Carbons

    Alan F.N. Boss1, Manuella G.C. Munhoz1, Gisele Amaral-Labat2, Rodrigo G.A. Lima2, Leonardo I. Medeiros2,3, Nila C.F.L. Medeiros2,3, Beatriz C.S. Fonseca2, Flavia L. Braghiroli4,*, Guilherme F.B. Lenz e Silva1

    Journal of Renewable Materials, Vol.12, No.10, pp. 1639-1659, 2024, DOI:10.32604/jrm.2024.056004 - 23 October 2024

    Abstract Radar Absorbing Materials (RAM) are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection. Most carbon allotropes that have the potential to be used as RAM are either carbon nanotubes (CNTs), graphene, carbon black (CB) and ultimately, sustainable porous carbon (SPC). Here, black wattle bark waste (following tannin extraction) was used as a sustainable source to produce SPC made from biomass waste. It was characterized and used as a filler for a silicone rubber matrix to produce a flexible RAM. The electromagnetic performance of this composite was compared with composites… More > Graphic Abstract

    Why Sustainable Porous Carbon Should be Further Explored as Radar-Absorbing Material? A Comparative Study with Different Nanostructured Carbons

  • Open Access

    ARTICLE

    Microstrip Patch Antenna with an Inverted T-Type Notch in the Partial Ground for Breast Cancer Detections

    Nure Alam Chowdhury1, Lulu Wang2,*, Md Shazzadul Islam3, Linxia Gu1, Mehmet Kaya1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1301-1322, 2024, DOI:10.32604/cmes.2023.030844 - 17 November 2023

    Abstract This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumor cells inside the human breast. The size of the current antenna is small enough (18 mm × 21 mm × 1.6 mm) to distribute around the breast phantom. The operating frequency has been observed from 6–14 GHz with a minimum return loss of −61.18 dB and the maximum gain of current proposed antenna is 5.8 dBi which is flexible with respect to the size of antenna. After the distribution of eight antennas around the breast phantom, the return loss curves were observed in the presence and More > Graphic Abstract

    Microstrip Patch Antenna with an Inverted T-Type Notch in the Partial Ground for Breast Cancer Detections

  • Open Access

    ARTICLE

    In-Situ Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

    Lei Liu*, Shenao Pang, Zhuhui Luo

    Journal of Renewable Materials, Vol.11, No.11, pp. 3891-3906, 2023, DOI:10.32604/jrm.2023.028192 - 31 October 2023

    Abstract The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society. Herein, branched carbon nanofibers (CNFs) were grown in-situ on recycled carbon fibers (RCFs) through the chemical vapor deposition method using nickel as catalysts and thiophene as aided-catalysts. The effect of thiophene on the growth morphology of CNFs was investigated. Correspondingly, branched CNFs-RCFs and straight CNFs-RCFs were respectively obtained in the presence and absence of thiophene. The microstructure and electromagnetic behaviour investigations have shown that the branched CNFs possess a typical multi-branched structure, More > Graphic Abstract

    <i>In-Situ</i> Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

Displaying 1-10 on page 1 of 40. Per Page