Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (140)
  • Open Access

    ARTICLE

    Effect of Process Parameters on the Agglomeration Behavior and Tensile Response of Graphene Reinforced Magnesium Matrix Composites Based on Molecular Dynamics Model

    Chentong Zhao1, Jiming Zhou1,2,*, Xujiang Chao1,3, Su Wang1, Lehua Qi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2453-2469, 2024, DOI:10.32604/cmes.2024.052723 - 31 October 2024

    Abstract The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix. This paper explores the mechanism of cooling rate, process temperature, and process pressure’s influence on the agglomeration behavior of graphene and the tensile response of composites from a computer simulation technology, namely molecular dynamics. Our findings reveal that the cooling rate exerts minimal influence on the tensile response of composites. Conversely, processing temperature significantly affects the degree of graphene aggregation, with higher temperatures leading to the formation of larger-sized graphene clusters. In More >

  • Open Access

    PROCEEDINGS

    Series-Parallel Machine Learning-Generated Five-Site Water Models for Ice Ih and Liquid: TIP5P-BG and TIP5P-BGT

    Jian Wang1,*, Haitao Hei1, Yonggang Zheng1, Hongwu Zhang1, Hongfei Ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010916

    Abstract Icing is a ubiquitous phenomenon in nature and widely observed in the micro/nanoconfinement, e.g., two-dimensional ice growth on Au surface, nanoconfinement-induced phase change, nanodroplet freezing on surface, etc. These complicated and abstruse processes and behaviours demand deep understanding from the microscale level by the aid of molecular dynamics (MD) simulation [1]. However, it is still a great challenge to accurately describe the ice and liquid water simultaneously with the present water models [1,2]. In response to this, we propose a series-parallel machine learning (ML) approach consisting of classification back-propagation neural network (BPNN), parallel regression BPNNs… More >

  • Open Access

    PROCEEDINGS

    Phase Diagram of Impacting Nanodroplets on Mesh Surfaces

    Qiang Ma1,2,3, Tuan Tran2,*, Xiaodong Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011051

    Abstract Controlling dynamics of impacting droplets on meshes is significantly important, which attracted a lot of attention because of its great potential applications in liquid separation, self-cleaning, and water harvesting [1-3], yet the underlying physical mechanisms are not entirely revealed. Here, the impact dynamics of a nanodroplet on mesh surfaces with different wettability are studied through molecular dynamics (MD) simulations. Due to scale effects between the nano and macroscale, the impacting nanodroplets exhibit some unique dynamic characteristics [4-7]. On a superhydrophobic mesh surface, when varying the impact conditions of nanodroplets, different outcomes can occur: (i) at… More >

  • Open Access

    ARTICLE

    FPGA Accelerators for Computing Interatomic Potential-Based Molecular Dynamics Simulation for Gold Nanoparticles: Exploring Different Communication Protocols

    Ankitkumar Patel1, Srivathsan Vasudevan1,*, Satya Bulusu2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3803-3818, 2024, DOI:10.32604/cmc.2024.052851 - 12 September 2024

    Abstract Molecular Dynamics (MD) simulation for computing Interatomic Potential (IAP) is a very important High-Performance Computing (HPC) application. MD simulation on particles of experimental relevance takes huge computation time, despite using an expensive high-end server. Heterogeneous computing, a combination of the Field Programmable Gate Array (FPGA) and a computer, is proposed as a solution to compute MD simulation efficiently. In such heterogeneous computation, communication between FPGA and Computer is necessary. One such MD simulation, explained in the paper, is the (Artificial Neural Network) ANN-based IAP computation of gold (Au147 & Au309) nanoparticles. MD simulation calculates the forces… More >

  • Open Access

    ARTICLE

    Droplet Condensation and Transport Properties on Multiple Composite Surface: A Molecular Dynamics Study

    Haowei Hu1,2,*, Qi Wang1, Xinnuo Chen1, Qin Li3, Mu Du4, Dong Niu5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1245-1259, 2024, DOI:10.32604/fhmt.2024.054223 - 30 August 2024

    Abstract To investigate the microscopic mechanism underlying the influence of surface-chemical gradient on heat and mass recovery, a molecular dynamics model including droplet condensation and transport process has been developed to examine heat and mass recovery performance. This work aimed at identify optimal conditions for enhancing heat and mass recovery through the combination of wettability gradient and nanopore transport. For comprehensive analysis, the structure in the simulation was categorized into three distinct groups: a homogeneous structure, a small wettability gradient, and a large wettability gradient. The homogeneous surface demonstrated low efficiency in heat and mass transfer, More >

  • Open Access

    ARTICLE

    Droplet Self-Driven Characteristics on Wedge-Shaped Surface with Composite Gradients: A Molecular Dynamics Study

    Haowei Hu1,2,*, Xinnuo Chen1, Qi Wang1, Qin Li3, Dong Niu4, Mu Du5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1071-1085, 2024, DOI:10.32604/fhmt.2024.054218 - 30 August 2024

    Abstract The self-driven behavior of droplets on a functionalized surface, coupled with wetting gradient and wedge patterns, is systematically investigated using molecular dynamics (MD) simulations. The effects of key factors, including wedge angle, wettability, and wetting gradient, on the droplet self-driving effect is revealed from the nanoscale. Results indicate that the maximum velocity of droplets on hydrophobic wedge-shaped surfaces increases with the wedge angle, accompanied by a rapid attenuation of driving force; however, the average velocity decreases with the increased wedge angle. Conversely, droplet movement on hydrophilic wedge-shaped surfaces follows the opposite trend, particularly in terms… More >

  • Open Access

    ARTICLE

    Investigating Transport Properties of Environmentally Friendly Azeotropic Binary Blends Based on Evaporation in Auto-Cascade Refrigeration

    Zhenzhen Liu, Hua Zhang*, Zilong Wang, Yugang Zhao

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1087-1105, 2024, DOI:10.32604/fhmt.2024.053851 - 30 August 2024

    Abstract The exploration of performance and prediction of environmentally friendly refrigerant physical properties represents a critical endeavor. Equilibrium molecular dynamics simulations were employed to investigate the density and transport properties of propane and ethane at ultra-low temperatures under evaporative pressure conditions. The results of the density simulation of the evaporation conditions of the blends proved the validity of the simulation method. Under identical temperature and pressure conditions, increasing the proportion of R170 in the refrigerant blends leads to a density decrease while the temperature range in which the gas-liquid phase transition occurs is lower. The analysis More >

  • Open Access

    ARTICLE

    Molecular Dynamics-Based Simulation of Polyethylene Pipe Degradation in High Temperature and High Pressure Conditions

    Guowei Feng1, Qing Li2,3, Yang Wang1,*, Nan Lin4, Sixi Zha1, Hang Dong1, Ping Chen5, Minjun Zheng6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2139-2161, 2024, DOI:10.32604/fdmp.2024.053941 - 23 August 2024

    Abstract High-density polyethylene (HDPE) pipes have gradually become the first choice for gas networks because of their excellent characteristics. As the use of pipes increases, there will unavoidably be a significant amount of waste generated when the pipes cease their operation life, which, if improperly handled, might result in major environmental contamination issues. In this study, the thermal degradation of polyethylene materials is simulated for different pressures (10, 50, 100, and 150 MPa) and temperatures (2300, 2500, 2700, and 2900 K) in the framework of Reactive Force Field (ReaxFF) molecular dynamics simulation. The main gas products,… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Numerical Simulation of Adsorption Characteristics and Exploitation Limits in Shale Oil Microscopic Pore Spaces

    Guochen Xu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1915-1924, 2024, DOI:10.32604/fdmp.2024.048337 - 06 August 2024

    Abstract Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures. The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties. Therefore, studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil. In this study, molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures, and the influence of pore… More >

  • Open Access

    ARTICLE

    MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu

    Dingyi Jin1, Guo Wei2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3455-3468, 2024, DOI:10.32604/cmc.2024.048644 - 20 June 2024

    Abstract To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces, this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al, Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic (MD) simulation. The atomic diffusion behaviors are compared between similar metal combinations (Al-Al, Cu-Cu) and dissimilar metal combinations (Al-Cu). By combining the simulation results and classical diffusion theory, the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained. The effects of material combinations and collision velocity on diffusion behaviors More >

Displaying 11-20 on page 2 of 140. Per Page