Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (324)
  • Open Access

    ARTICLE

    Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group

    Yadong Xu1, Weixing Hong2, Mohammad Noori3,6,*, Wael A. Altabey4,*, Ahmed Silik5, Nabeel S.D. Farhan2

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 763-783, 2024, DOI:10.32604/sdhm.2024.053763 - 20 September 2024

    Abstract This study introduces an innovative “Big Model” strategy to enhance Bridge Structural Health Monitoring (SHM) using a Convolutional Neural Network (CNN), time-frequency analysis, and fine element analysis. Leveraging ensemble methods, collaborative learning, and distributed computing, the approach effectively manages the complexity and scale of large-scale bridge data. The CNN employs transfer learning, fine-tuning, and continuous monitoring to optimize models for adaptive and accurate structural health assessments, focusing on extracting meaningful features through time-frequency analysis. By integrating Finite Element Analysis, time-frequency analysis, and CNNs, the strategy provides a comprehensive understanding of bridge health. Utilizing diverse sensor More >

  • Open Access

    ARTICLE

    Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages

    Giada Faraco, Andrea Vincenzo De Nunzio, Nicola Ivan Giannoccaro*, Arcangelo Messina

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 739-762, 2024, DOI:10.32604/sdhm.2024.052663 - 20 September 2024

    Abstract The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring, such as that carried out by a series of accelerometers placed on the structure, is certainly a goal of extreme and current interest. In the present work, the results obtained from the processing of experimental data of a real structure are shown. The analyzed structure is a lattice structure approximately 9 m high, monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels. The data used refer to continuous monitoring that lasted for a total of 1… More >

  • Open Access

    ARTICLE

    MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis and Prediction

    Talal H. Noor*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1273-1299, 2024, DOI:10.32604/csse.2024.052510 - 13 September 2024

    Abstract In recent years, container-based cloud virtualization solutions have emerged to mitigate the performance gap between non-virtualized and virtualized physical resources. However, there is a noticeable absence of techniques for predicting microservice performance in current research, which impacts cloud service users’ ability to determine when to provision or de-provision microservices. Predicting microservice performance poses challenges due to overheads associated with actions such as variations in processing time caused by resource contention, which potentially leads to user confusion. In this paper, we propose, develop, and validate a probabilistic architecture named Microservice Performance Diagnosis and Prediction (MPDP). MPDP… More >

  • Open Access

    ARTICLE

    Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System

    Wen-Tsai Sung1, Indra Griha Tofik Isa1,2, Sung-Jung Hsiao3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3733-3759, 2024, DOI:10.32604/cmc.2024.053634 - 12 September 2024

    Abstract Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income. The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity. In this study, a Wireless Sensor Networks (“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning (DRL) technology in carrying out prediction tasks based on three classifications: “optimal,” “sub-optimal,” or “not-optimal” conditions based on three parameters including humidity, temperature, and soil moisture. The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.… More >

  • Open Access

    ARTICLE

    Monitor and Acceptance among Couples in Romantic Relationships: Actor-Partner Interdependence Models Based on the Monitor and Acceptance Theory

    Xue Wen1,2, Yuyang Zhou3, Jiaxuan Du4, Xiaoyan Liu1, Wei Xu1,2,*

    International Journal of Mental Health Promotion, Vol.26, No.7, pp. 589-598, 2024, DOI:10.32604/ijmhp.2024.053095 - 30 July 2024

    Abstract Communication could be an essential part of couples in their daily life. Based on Monitor and Acceptance Theory (MAT), the present study explored the mediating role of communication in the relationship between mindfulness and relationship quality among college-student couples. The research examined the dynamic relationship of monitoring and acceptance to relationship satisfaction in the Actor-Partner Interdependence Model (APIM), and the mediating effect of positive or negative communications in these relationships. A total of 96 pairs of couples in the universities in Nanjing, China participated in the research. Momentary measurements were used to measure the momentary More >

  • Open Access

    ARTICLE

    Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model

    Wanrun Li1,2,3,*, Wenhai Zhao1, Tongtong Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 553-575, 2024, DOI:10.32604/sdhm.2024.050751 - 19 July 2024

    Abstract The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage, impacting the aerodynamic performance of the blades. To address the challenge of detecting and quantifying surface defects on wind turbine blades, a blade surface defect detection and quantification method based on an improved Deeplabv3+ deep learning model is proposed. Firstly, an improved method for wind turbine blade surface defect detection, utilizing Mobilenetv2 as the backbone feature extraction network, is proposed based on an original Deeplabv3+ deep learning model to address the issue of limited robustness. Secondly, through integrating the concept of… More > Graphic Abstract

    Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model

  • Open Access

    ARTICLE

    Novel Fractal-Based Features for Low-Power Appliances in Non-Intrusive Load Monitoring

    Anam Mughees1,2,*, Muhammad Kamran1,3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 507-526, 2024, DOI:10.32604/cmc.2024.051820 - 18 July 2024

    Abstract Non-intrusive load monitoring is a method that disaggregates the overall energy consumption of a building to estimate the electric power usage and operating status of each appliance individually. Prior studies have mostly concentrated on the identification of high-power appliances like HVAC systems while overlooking the existence of low-power appliances. Low-power consumer appliances have comparable power consumption patterns, which can complicate the detection task and can be mistaken as noise. This research tackles the problem of classification of low-power appliances and uses turn-on current transients to extract novel features and develop unique appliance signatures. A hybrid… More >

  • Open Access

    ARTICLE

    Monitoring Xylem Transport in the Stem of Lilium lancifolium Using Fluorescent Dye 5(6)-Carboxyfluorescein Diacetate

    Yulin Luo1,2,#, Panpan Yang2,#, Mengmeng Bi2, Leifeng Xu2, Fang Du3,*, Jun Ming2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 1057-1066, 2024, DOI:10.32604/phyton.2024.051197 - 28 May 2024

    Abstract The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth. To understand these physiological changes, it is extremely important to observe the transport of xylem. In this study, the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section. Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated. Then, the transport rule of 5(6)-Carboxyfluorescein diacetate (CFDA) in the xylem of the stem of L. lancifolium was studied by fluorescence dye in live cells tracer technology. The results showed… More >

  • Open Access

    ARTICLE

    A Hybrid Manufacturing Process Monitoring Method Using Stacked Gated Recurrent Unit and Random Forest

    Chao-Lung Yang1,*, Atinkut Atinafu Yilma1,2, Bereket Haile Woldegiorgis2, Hendrik Tampubolon3,4, Hendri Sutrisno5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 233-254, 2024, DOI:10.32604/iasc.2024.043091 - 21 May 2024

    Abstract This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations. Since real-time production process monitoring is critical in today’s smart manufacturing. The more robust the monitoring model, the more reliable a process is to be under control. In the past, many researchers have developed real-time monitoring methods to detect process shifts early. However, these methods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties. In this paper, a robust monitoring model combining Gated Recurrent Unit (GRU) and Random… More >

  • Open Access

    ARTICLE

    A Framework for Driver Drowsiness Monitoring Using a Convolutional Neural Network and the Internet of Things

    Muhamad Irsan1,2,*, Rosilah Hassan2, Anwar Hassan Ibrahim3, Mohamad Khatim Hasan2, Meng Chun Lam2, Wan Mohd Hirwani Wan Hussain4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 157-174, 2024, DOI:10.32604/iasc.2024.042193 - 21 May 2024

    Abstract One of the major causes of road accidents is sleepy drivers. Such accidents typically result in fatalities and financial losses and disadvantage other road users. Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system. Most studies have examined how the mouth and eyelids move. However, this limits the system’s ability to identify drowsiness traits. Therefore, this study designed an Accident Detection Framework (RPK) that could be used to reduce road accidents due to sleepiness and detect the location of accidents. The drowsiness detection model used three facial… More >

Displaying 11-20 on page 2 of 324. Per Page