Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (346)
  • Open Access

    ARTICLE

    A Bayesian Optimized Stacked Long Short-Term Memory Framework for Real-Time Predictive Condition Monitoring of Heavy-Duty Industrial Motors

    Mudasir Dilawar*, Muhammad Shahbaz

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5091-5114, 2025, DOI:10.32604/cmc.2025.064090 - 19 May 2025

    Abstract In the era of Industry 4.0, condition monitoring has emerged as an effective solution for process industries to optimize their operational efficiency. Condition monitoring helps minimize unplanned downtime, extending equipment lifespan, reducing maintenance costs, and improving production quality and safety. This research focuses on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring of industrial equipment. The study aims to enhance predictive maintenance for industrial equipment by forecasting vibration values based on domain-specific feature engineering. Early prediction of vibration enables proactive interventions to minimize downtime and extend the lifespan of critical… More >

  • Open Access

    ARTICLE

    Robust Alzheimer’s Patient Detection and Tracking for Room Entry Monitoring Using YOLOv8 and Cross Product Analysis

    Praveen Kumar Sekharamantry1,2,*, Farid Melgani1, Roberto Delfiore3, Stefano Lusardi3

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4215-4238, 2025, DOI:10.32604/cmc.2025.062686 - 19 May 2025

    Abstract Recent advances in computer vision and artificial intelligence (AI) have made real-time people counting systems extremely reliable, with experts in crowd control, occupancy supervision, and security. To improve the accuracy of people counting at entry and exit points, the current study proposes a deep learning model that combines You Only Look Once (YOLOv8) for object detection, ByteTrack for multi-object tracking, and a unique method for vector-based movement analysis. The system determines if a person has entered or exited by analyzing their movement concerning a predetermined boundary line. Two different logical strategies are used to record… More >

  • Open Access

    ARTICLE

    A UAV Path-Planning Approach for Urban Environmental Event Monitoring

    Huiru Cao1, Shaoxin Li2, Xiaomin Li3,*, Yongxin Liu4

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5575-5593, 2025, DOI:10.32604/cmc.2025.061954 - 19 May 2025

    Abstract Efficient flight path design for unmanned aerial vehicles (UAVs) in urban environmental event monitoring remains a critical challenge, particularly in prioritizing high-risk zones within complex urban landscapes. Current UAV path planning methodologies often inadequately account for environmental risk factors and exhibit limitations in balancing global and local optimization efficiency. To address these gaps, this study proposes a hybrid path planning framework integrating an improved Ant Colony Optimization (ACO) algorithm with an Orthogonal Jump Point Search (OJPS) algorithm. Firstly, a two-dimensional grid model is constructed to simulate urban environments, with key monitoring nodes selected based on… More >

  • Open Access

    ARTICLE

    Leveraging Safe and Secure AI for Predictive Maintenance of Mechanical Devices Using Incremental Learning and Drift Detection

    Prashanth B. S1,*, Manoj Kumar M. V.2,*, Nasser Almuraqab3, Puneetha B. H4

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4979-4998, 2025, DOI:10.32604/cmc.2025.060881 - 19 May 2025

    Abstract Ever since the research in machine learning gained traction in recent years, it has been employed to address challenges in a wide variety of domains, including mechanical devices. Most of the machine learning models are built on the assumption of a static learning environment, but in practical situations, the data generated by the process is dynamic. This evolution of the data is termed concept drift. This research paper presents an approach for predicting mechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment. The method proposed here is applicable… More >

  • Open Access

    ARTICLE

    Machine Learning for Smart Soil Monitoring

    Khaoula Ben Abdellafou1, Kamel Zidi2, Ahamed Aljuhani1, Okba Taouali1,*, Mohamed Faouzi Harkat3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3007-3023, 2025, DOI:10.32604/cmc.2025.063146 - 16 April 2025

    Abstract Environmental protection requires identifying, investigating, and raising awareness about safeguarding nature from the harmful effects of both anthropogenic and natural events. This process of environmental protection is essential for maintaining human well-being. In this context, it is critical to monitor and safeguard the personal environment, which includes maintaining a healthy diet and ensuring plant safety. Living in a balanced environment and ensuring the safety of plants for green spaces and a healthy diet require controlling the nature and quality of the soil in our environment. To ensure soil quality, it is imperative to monitor and… More >

  • Open Access

    ARTICLE

    Robust Real-Time Analysis of Cow Behaviors Using Accelerometer Sensors and Decision Trees with Short Data Windows and Misalignment Compensation

    Duc-Nghia Tran1, Viet-Manh Do1,2, Manh-Tuyen Vi3,*, Duc-Tan Tran3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2525-2553, 2025, DOI:10.32604/cmc.2025.062590 - 16 April 2025

    Abstract This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors. Data collection and behavioral analysis are achieved using machine learning (ML) algorithms through accelerometer sensors. However, behavioral analysis poses challenges due to the complexity of cow activities. The task becomes more challenging in a real-time behavioral analysis system with the requirement for shorter data windows and energy constraints. Shorter windows may lack sufficient information, reducing algorithm performance. Additionally, the sensor’s position on the cows may shift during practical use, altering the collected accelerometer… More >

  • Open Access

    ARTICLE

    Advancing Railway Infrastructure Monitoring: A Case Study on Railway Pole Detection

    Yuxin Yan, Huirui Wang, Jingyi Wen, Zerong Lan, Liang Wang*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3059-3073, 2025, DOI:10.32604/cmc.2024.057949 - 16 April 2025

    Abstract The development of artificial intelligence (AI) technologies creates a great chance for the iteration of railway monitoring. This paper proposes a comprehensive method for railway utility pole detection. The framework of this paper on railway systems consists of two parts: point cloud preprocessing and railway utility pole detection. This method overcomes the challenges of dynamic environment adaptability, reliance on lighting conditions, sensitivity to weather and environmental conditions, and visual occlusion issues present in 2D images and videos, which utilize mobile LiDAR (Laser Radar) acquisition devices to obtain point cloud data. Due to factors such as… More >

  • Open Access

    ARTICLE

    Vacuum Loss State Monitoring of Aerospace Vacuum Pressure Vessels Based on Quasi-Distributed FBG Sensing Technology

    Zhe Gong1, Ge Yan2, Jie Ma1, Chang-Lin Yan2, Fu-Kang Shen1, Hu Li3, Hua-Ping Wang1,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 473-498, 2025, DOI:10.32604/sdhm.2024.057916 - 03 April 2025

    Abstract Vacuum pressure vessels are one of the critical components in the aerospace field, and understanding the mechanical behavior feature is particularly important for safe operation. Therefore, it is meaningful to obtain the stress and strain distributions in the key positions of the vacuum tank, which can contribute to the safe performance assessment, operation efficiency, and fault analysis. Hence, this paper provides the distribution characteristics and variation rules of stress and tank strain of vacuum under different internal and external pressures through the elastic theoretical analysis and iteration method. The quasi-distributed fiber Bragg grating (FBG) sensors… More >

  • Open Access

    ARTICLE

    Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion

    Wenhai Zhao1, Wanrun Li1,2,*, Ximei Li1,2, Shoutu Li3, Yongfeng Du1,2

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 593-611, 2025, DOI:10.32604/sdhm.2024.057759 - 03 April 2025

    Abstract Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies, as well as the inability to achieve precise full-field monitoring, this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion. Firstly, the Lucas-Kanade Tomasi (LKT) optical flow method and a multi-region of interest (ROI) monitoring structure are employed to track pixel displacements, which are subsequently subjected to band pass filtering and resampling operations. Secondly, the actual displacement time history is derived through double integration of the acquired acceleration data and… More >

  • Open Access

    ARTICLE

    Fuzzy Decision-Based Clustering for Efficient Data Aggregation in Mobile UWSNs

    Aadil Mushtaq Pandith1, Manni Kumar2, Naveen Kumar3, Nitin Goyal4,*, Sachin Ahuja2, Yonis Gulzar5, Rashi Rastogi6, Rupesh Gupta7

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 259-279, 2025, DOI:10.32604/cmc.2025.062608 - 26 March 2025

    Abstract Underwater wireless sensor networks (UWSNs) rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink. However, many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments. Additionally, conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink, commonly known as the energy hole issue. Moreover, cluster-based aggregation methods face significant challenges such as cluster head (CH) failures and collisions within clusters that degrade overall network performance. To address these limitations,… More >

Displaying 1-10 on page 1 of 346. Per Page