Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (82)
  • Open Access

    ABSTRACT

    Supplement. 5 IX National Congress of Morphological Sciences. La Plata - Argentina.

    BIOCELL, Vol.28, Suppl.S, pp. 235-250, 2004

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Morphological Characterization of Brazil Nut Tree (Bertholletia excelsa) Fruit Pericarp

    Gustavo P. Petrechen1,4,*, Marcos Arduin3, José D. Ambrósio1,2

    Journal of Renewable Materials, Vol.7, No.7, pp. 683-692, 2019, DOI:10.32604/jrm.2019.04588

    Abstract This article presents the overall morphological structure of the Brazil nut tree (Bertholletia excelsa) fruit pericarp, from macro to nano scale. The acquired knowledge would be used for the development of new applications, like using the materials as fillers for biocomposites, or as a hierarchical architecture model for biomimetics. This research was performed using stereo and light microscopy and conventional and force field emission scanning electron microscopy. The pericarp presents three layers: the exocarp, a dark gray, brittle and fragile outer layer; the mesocarp, a beige, dry, rigid, impermeable and fibrous intermediate layer; and the endocarp, an inner layer with… More >

  • Open Access

    ARTICLE

    Effect of Poly(ε-caprolactone-b-tetrahydrofuran) Triblock Copolymer Concentration on Morphological, Thermal and Mechanical Properties of Immiscible PLA/PCL Blends

    Paula do Patrocínio Dias, Marcelo Aparecido Chinelatto*

    Journal of Renewable Materials, Vol.7, No.2, pp. 129-138, 2019, DOI:10.32604/jrm.2019.00037

    Abstract In this study a low molecular weight triblock copolymer derived from ε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends. Ternary blends with 0, 1.5 wt%, 3 wt% and 5 wt% copolymer and about 75 wt% PLA were prepared by single screw extrusion and characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and Izod impact testing. SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration. This result can be explained by the low shear rate employed during processing step and… More >

  • Open Access

    ARTICLE

    Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites

    Ahmad Safwan1, Mohammad Jawaid1*, Mohamed T. H. Sultan1,2, Azman Hassan3

    Journal of Renewable Materials, Vol.6, No.5, pp. 529-535, 2018, DOI:10.7569/JRM.2018.634103

    Abstract The application of natural fibers as reinforcement in composite material has increased due to environmental concerns, low cost, degradability and health concerns. The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf (K)/bamboo hybrid composite. There were three types of bamboo fibers evaluated in this study which include bamboo mat (B), bamboo fabric (BF) and bamboo powder (BP). Chemical composition of B, BF, BP and K fibers were analyzed in this study. The effect of different types of bamboo fibers on tensile, impact, and morphological properties were investigated. The… More >

  • Open Access

    ARTICLE

    Shear Strength and Morphological Study of Polyurethane-OMMT Clay Nanocomposite Adhesive Derived from Vegetable Oil-Based Constituents

    Swarnalata Sahoo1,2*, Hemjyoti Kalita1, Smita Mohanty1,2, Sanjay Kumar Nayak1,2

    Journal of Renewable Materials, Vol.6, No.1, pp. 117-125, 2018, DOI:10.7569/JRM.2017.634155

    Abstract In the current work, we have synthesized vegetable oil-based polyurethane-OMMT clay nanocomposite (PUNC) adhesive with the incorporation of different wt% of organically modified nanoclay (1 to 5 wt%) into the biobased polyurethane (PU) matrix through in-situ polymerization process via ultrasonication method. At the initial stage, PU adhesive was prepared using polyol and partially biobased aliphatic isocyanate, wherein polyol was derived from the transesterified castor oil using ethylene glycol. The formation of PU and PUNC adhesive was confirmed using Fourier transform infrared (FTIR) spectroscopy analysis. The tensile strength of PU with different wt% of nanoclay was determined and the analysis showed… More >

  • Open Access

    ARTICLE

    Physico-Chemical and Morphological Characterization of Cellulosic Samples Obtained from Sisal Fibers

    G. Mondragon, C. Peña-Rodriguez, A. Eceiza, A. Arbelaiz*

    Journal of Renewable Materials, Vol.5, No.5, pp. 345-356, 2017, DOI:10.7569/JRM.2017.634124

    Abstract In this work, the main chemical reactions conditions of a succession of specific chemical treatments used for the isolation of nanocellulose from sisal fibers were evaluated. The novelty of this work is the study done to analyze the effect of different reaction conditions (time or concentration) in fiber structure and composition as well as in the characteristics of obtained cellulosic samples. In order to achieve this goal different physicochemical, thermal and morphological characterization techniques were used after each chemical treatment and the most suitable reaction conditions were selected for the subsequent treatment. Moreover, the thermal stability evolution of cellulose nanocrystals… More >

  • Open Access

    ARTICLE

    Biodegradable PLA/PBAT/Clay Nanocomposites: Morphological, Rheological and Thermomechanical Behavior

    Juan P. Correa1,2*, Alejandro Bacigalupe2,3, Jorge Maggi4, Patricia Eisenberg2,3

    Journal of Renewable Materials, Vol.4, No.4, pp. 258-265, 2016, DOI:10.7569/JRM.2016.634117

    Abstract Poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT)-based nanocomposites were prepared by melt blending of PLA and PBAT with 5 wt% of unmodified (Cloisite Na) and modified (Cloisite 30B) montmorillonites. X-ray diffraction (XRD) revealed an intercalated structure in both nanocomposites. The extent of the intercalation was higher for nanocomposites based on modified clays (OMMT) with chemical affinity with the polymer matrix. Rheological measurements have shown an increase in viscosity and a better degree of clay dispersion for nanocomposites containing OMMT. Nanocomposites with OMMT showed lower PBAT separated phase particle size and improvements in thermal stability, mechanical properties and water vapor barrier when compared with… More >

  • Open Access

    ARTICLE

    Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells (CBS)/Polycaprolactone-Based Composites

    D. Puglia1*, F. Dominici1, M. Badalotti2, C. Santulli3, J.M. Kenny1

    Journal of Renewable Materials, Vol.4, No.3, pp. 199-205, 2016, DOI:10.7569/JRM.2016.634102

    Abstract In this work, cocoa bean shells (CBS), which were ground, then sieved to less than 150 μm and dried in a vacuum oven, have been introduced in a polycaprolactone (PCL) matrix in three different amounts, 10, 20 and 30% wt. The obtained composites were tested under tensile loading, which indicated an enhanced rigidity with a slight decrease of strength with respect to the neat polymer and a reduced elongation, particularly evident for composites with 30 wt% CBS, where final collapse took place for strains only slightly exceeding the yielding point. Differential scanning calorimetry (DSC) indicated a rather negligible variation of… More >

  • Open Access

    ARTICLE

    Effect of Epoxidized Jatropha Oil on the Cure, Thermal, Morphological and Viscoelastic Properties of Epoxy Resins

    A. Sammaiah1, K. V. Padmaja1, K. I. Suresh*,2, R. B. N. Prasad1

    Journal of Renewable Materials, Vol.4, No.2, pp. 113-122, 2016, DOI:10.7569/JRM.2015.634118

    Abstract This article reports the effect of epoxidized jatropha oil (EJO) on the thermal, cure and viscoelastic properties of epoxy resins. Epoxidized jatropha oil with an oxirane value of 5.0 was prepared and epoxy formulations containing different concentrations of EJO were evaluated for cure, morphology, thermal and viscoelastic properties. The curing temperature of the formulations increased with increasing EJO content. The glass transition temperature of the cured films decreased from 56 °C for unmodified epoxy resin to 23 °C for the sample with 60 wt% EJO reactive diluent, suggesting good plasticizing action. The thermal decomposition was only marginally affected. More >

  • Open Access

    ARTICLE

    Comparison of Right Ventricle Morphological and Mechanical Characteristics for Healthy and Patients with Tetralogy of Fallot: An In Vivo MRI-Based Modeling Study

    Dalin Tang1,*,2, Heng Zuo2,*, Chun Yang2, Zheyang Wu2, Xueying Huang3, Rahul H. Rathod4, Alexander Tang4, Kristen L. Billiar5, Tal Geva4

    Molecular & Cellular Biomechanics, Vol.14, No.3, pp. 137-151, 2017, DOI:10.3970/mcb.2017.014.137

    Abstract Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricle failure. Comparing TOF patients with healthy people may provide information to address this challenge. Cardiac magnetic resonance (CMR) data were obtained from 16 TOF patients (patient group, PG) and 6 healthy volunteers (healthy group, HG). At begin-of-ejection, better patient group (n=5, BPG) stress was very close to HG stress (54.7±38.4 kPa vs. 51.2±55.7 kPa, p=0.6889) while worse patient group (n=11, WPG) stress was 84% higher than HG stress (p=0.0418). Stress may be used as an indicator to differentiate BPG patients from WPG… More >

Displaying 71-80 on page 8 of 82. Per Page