Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model

    Lijuan Huang1, Xianyi Liu2, Jinping Liu2,*, Pengfei Xu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068818 - 10 November 2025

    Abstract The ubiquity of mobile devices has driven advancements in mobile object detection. However, challenges in multi-scale object detection in open, complex environments persist due to limited computational resources. Traditional approaches like network compression, quantization, and lightweight design often sacrifice accuracy or feature representation robustness. This article introduces the Fast Multi-scale Channel Shuffling Network (FMCSNet), a novel lightweight detection model optimized for mobile devices. FMCSNet integrates a fully convolutional Multilayer Perceptron (MLP) module, offering global perception without significantly increasing parameters, effectively bridging the gap between CNNs and Vision Transformers. FMCSNet achieves a delicate balance between computation… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Prediction of Seepage Flow in Soil-Like Porous Media

    Zhenzhen Shen1,2, Kang Yang2, Dengfeng Wei2, Quansheng Liang2, Zhenpeng Ma2, Hong Wang2, Keyu Wang2, Chunwei Zhang2, Xiaohu Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2741-2760, 2025, DOI:10.32604/fdmp.2025.070395 - 01 December 2025

    Abstract The rapid prediction of seepage mass flow in soil is essential for understanding fluid transport in porous media. This study proposes a new method for fast prediction of soil seepage mass flow by combining mesoscopic modeling with deep learning. Porous media structures were generated using the Quartet Structure Generation Set (QSGS) method, and a mesoscopic-scale seepage calculation model was applied to compute flow rates. These results were then used to train a deep learning model for rapid prediction. The analysis shows that larger average pore diameters lead to higher internal flow velocities and mass flow More >

  • Open Access

    PROCEEDINGS

    A Deep-Learning Based Model with Intra- and Inter-Well Constraints for Intelligent Identification of Stratigraphic Layers

    Jinghua Yang1, Bin Gong1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-2, 2025, DOI: 10.32604/icces.2025.011889

    Abstract Geological stratification interpretation divides geological strata based on acquired well-logging data, providing comparative analysis results for strata and structures. This process serves as a fundamental framework for subsequent drilling and development design plans, making it a crucial step in oil exploration and development process. Traditional geological stratification interpretation methods are based primarily on geological, logging, and experimental data, with manual determination of strata boundaries to obtain interpretation results. However, manual interpretation is characterized by strong subjectivity and reliance on experience, which may compromise the quality and consistency of the results. To eliminate the dependency on… More >

  • Open Access

    ARTICLE

    LOEV-APO-MLP: Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training

    Zhiwei Ye1,2,3, Dingfeng Song1, Haitao Xie1,2,3,*, Jixin Zhang1,2, Wen Zhou1,2, Mengya Lei1,2, Xiao Zheng1,2, Jie Sun1, Jing Zhou1, Mengxuan Li1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5509-5530, 2025, DOI:10.32604/cmc.2025.067342 - 23 October 2025

    Abstract The Multilayer Perceptron (MLP) is a fundamental neural network model widely applied in various domains, particularly for lightweight image classification, speech recognition, and natural language processing tasks. Despite its widespread success, training MLPs often encounter significant challenges, including susceptibility to local optima, slow convergence rates, and high sensitivity to initial weight configurations. To address these issues, this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer (LOEV-APO), which enhances both global exploration and local exploitation simultaneously. LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling (LHS) with Opposition-Based Learning (OBL), thus… More >

  • Open Access

    ARTICLE

    Machine Learning Model for Wind Power Forecasting Using Enhanced Multilayer Perceptron

    Ahmed A. Ewees1,2,*, Mohammed A. A. Al-Qaness3, Ali Alshahrani1, Mohamed Abd Elaziz4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2287-2303, 2025, DOI:10.32604/cmc.2025.061320 - 16 April 2025

    Abstract Wind power forecasting plays a crucial role in optimizing the integration of wind energy into the grid by predicting wind patterns and energy output. This enhances the efficiency and reliability of renewable energy systems. Forecasting approaches inform energy management strategies, reduce reliance on fossil fuels, and support the broader transition to sustainable energy solutions. The primary goal of this study is to introduce an effective methodology for estimating wind power through temporal data analysis. This research advances an optimized Multilayer Perceptron (MLP) model using recently proposed metaheuristic optimization algorithms, namely the Fire Hawk Optimizer (FHO)… More >

  • Open Access

    ARTICLE

    Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network

    Yongfeng Tai1, Xingyu Yan2, Xiangyi Geng3, Lin Mu4, Mingshun Jiang2, Faye Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 365-383, 2025, DOI:10.32604/sdhm.2024.053998 - 15 January 2025

    Abstract The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee. In engineering scenarios, only a small amount of bearing performance degradation data can be obtained through accelerated life testing. In the absence of lifetime data, the hidden long-term correlation between performance degradation data is challenging to mine effectively, which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method. To address this problem, a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed. Firstly,… More >

  • Open Access

    ARTICLE

    MixerKT: A Knowledge Tracing Model Based on Pure MLP Architecture

    Jun Wang1,2, Mingjie Wang1,2, Zijie Li1,2, Ken Chen1,2, Jiatian Mei1,2, Shu Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 485-498, 2025, DOI:10.32604/cmc.2024.057224 - 03 January 2025

    Abstract In the field of intelligent education, the integration of artificial intelligence, especially deep learning technologies, has garnered significant attention. Knowledge tracing (KT) plays a pivotal role in this field by predicting students’ future performance through the analysis of historical interaction data, thereby assisting educators in evaluating knowledge mastery and tailoring instructional strategies. Traditional knowledge tracing methods, largely based on Recurrent Neural Networks (RNNs) and Transformer models, primarily focus on capturing long-term interaction patterns in sequential data. However, these models may neglect crucial short-term dynamics and other relevant features. This paper introduces a novel approach to… More >

  • Open Access

    ARTICLE

    Securing Web by Predicting Malicious URLs

    Imran Khan, Meenakshi Megavarnam*

    Journal of Cyber Security, Vol.6, pp. 117-130, 2024, DOI:10.32604/jcs.2024.048332 - 06 December 2024

    Abstract A URL (Uniform Resource Locator) is used to locate a digital resource. With this URL, an attacker can perform a variety of attacks, which can lead to serious consequences for both individuals and organizations. Therefore, attackers create malicious URLs to gain access to an organization’s systems or sensitive information. It is crucial to secure individuals and organizations against these malicious URLs. A combination of machine learning and deep learning was used to predict malicious URLs. This research contributes significantly to the field of cybersecurity by proposing a model that seamlessly integrates the accuracy of machine More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems

    Mustufa Haider Abidi*, Hisham Alkhalefah, Mohamed K. Aboudaif

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 977-997, 2024, DOI:10.32604/cmes.2023.044169 - 30 December 2023

    Abstract The healthcare data requires accurate disease detection analysis, real-time monitoring, and advancements to ensure proper treatment for patients. Consequently, Machine Learning methods are widely utilized in Smart Healthcare Systems (SHS) to extract valuable features from heterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities. These methods are employed across different domains that are susceptible to adversarial attacks, necessitating careful consideration. Hence, this paper proposes a crossover-based Multilayer Perceptron (CMLP) model. The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on the medical… More >

  • Open Access

    ARTICLE

    GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture

    Abdelwahed Berguiga1,2,*, Ahlem Harchay1,2, Ayman Massaoudi1,2, Mossaad Ben Ayed3, Hafedh Belmabrouk4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 379-402, 2023, DOI:10.32604/cmc.2023.041667 - 31 October 2023

    Abstract Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can… More >

Displaying 1-10 on page 1 of 31. Per Page