Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    A Global Training Model for Beat Classification Using Basic Electrocardiogram Morphological Features

    Shubha Sumesh1, John Yearwood1, Shamsul Huda1 and Shafiq Ahmad2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4503-4521, 2022, DOI:10.32604/cmc.2022.015474 - 11 October 2021

    Abstract

    Clinical Study and automatic diagnosis of electrocardiogram (ECG) data always remain a challenge in diagnosing cardiovascular activities. The analysis of ECG data relies on various factors like morphological features, classification techniques, methods or models used to diagnose and its performance improvement. Another crucial factor in the methodology is how to train the model for each patient. Existing approaches use standard training model which faces challenges when training data has variation due to individual patient characteristics resulting in a lower detection accuracy. This paper proposes an adaptive approach to identify performance improvement in building a training model

    More >

  • Open Access

    ARTICLE

    Advance Artificial Intelligence Technique for Designing Double T-Shaped Monopole Antenna

    El-Sayed M. El-kenawy1, Hattan F. Abutarboush2, Ali Wagdy Mohamed3,4, Abdelhameed Ibrahim5,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2983-2995, 2021, DOI:10.32604/cmc.2021.019114 - 24 August 2021

    Abstract Machine learning (ML) has taken the world by a tornado with its prevalent applications in automating ordinary tasks and using turbulent insights throughout scientific research and design strolls. ML is a massive area within artificial intelligence (AI) that focuses on obtaining valuable information out of data, explaining why ML has often been related to stats and data science. An advanced meta-heuristic optimization algorithm is proposed in this work for the optimization problem of antenna architecture design. The algorithm is designed, depending on the hybrid between the Sine Cosine Algorithm (SCA) and the Grey Wolf Optimizer More >

  • Open Access

    ARTICLE

    Adaptive Error Curve Learning Ensemble Model for Improving Energy Consumption Forecasting

    Prince Waqas Khan, Yung-Cheol Byun*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1893-1913, 2021, DOI:10.32604/cmc.2021.018523 - 21 July 2021

    Abstract Despite the advancement within the last decades in the field of smart grids, energy consumption forecasting utilizing the metrological features is still challenging. This paper proposes a genetic algorithm-based adaptive error curve learning ensemble (GA-ECLE) model. The proposed technique copes with the stochastic variations of improving energy consumption forecasting using a machine learning-based ensembled approach. A modified ensemble model based on a utilizing error of model as a feature is used to improve the forecast accuracy. This approach combines three models, namely CatBoost (CB), Gradient Boost (GB), and Multilayer Perceptron (MLP). The ensembled CB-GB-MLP model’s… More >

  • Open Access

    ARTICLE

    Driving Pattern Profiling and Classification Using Deep Learning

    Meenakshi Malik1, Rainu Nandal1, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 887-906, 2021, DOI:10.32604/iasc.2021.016272 - 20 April 2021

    Abstract The last several decades have witnessed an exponential growth in the means of transport globally, shrinking geographical distances and connecting the world. The automotive industry has grown by leaps and bounds, with millions of new vehicles being sold annually, be it for personal commuting or for public or commodity transport. However, millions of motor vehicles on the roads also mean an equal number of drivers with varying levels of skill and adherence to safety regulations. Very little has been done in the way of exploring and profiling driving patterns and vehicular usage using real world… More >

  • Open Access

    ARTICLE

    Artificial Neural Networks for Prediction of COVID-19 in Saudi Arabia

    Nawaf N. Hamadneh1, Waqar A. Khan2, Waqar Ashraf3, Samer H. Atawneh4, Ilyas Khan5,*, Bandar N. Hamadneh6

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2787-2796, 2021, DOI:10.32604/cmc.2021.013228 - 28 December 2020

    Abstract In this study, we have proposed an artificial neural network (ANN) model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17, 2020. The proposed model is based on the existing data (training data) published in the Saudi Arabia Coronavirus disease (COVID-19) situation—Demographics. The Prey-Predator algorithm is employed for the training. Multilayer perceptron neural network (MLPNN) is used in this study. To improve the performance of MLPNN, we determined the parameters of MLPNN using the prey-predator algorithm (PPA). The proposed model is called the MLPNN–PPA. More >

  • Open Access

    ARTICLE

    Least-Square Support Vector Machine and Wavelet Selection for Hearing Loss Identification

    Chaosheng Tang1, Deepak Ranjan Nayak2, Shuihua Wang1,3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 299-313, 2020, DOI:10.32604/cmes.2020.011069 - 18 September 2020

    Abstract Hearing loss (HL) is a kind of common illness, which can significantly reduce the quality of life. For example, HL often results in mishearing, misunderstanding, and communication problems. Therefore, it is necessary to provide early diagnosis and timely treatment for HL. This study investigated the advantages and disadvantages of three classical machine learning methods: multilayer perceptron (MLP), support vector machine (SVM), and least-square support vector machine (LS-SVM) approach and made a further optimization of the LS-SVM model via wavelet entropy. The investigation illustrated that themultilayer perceptron is a shallowneural network,while the least square support vector More >

  • Open Access

    ARTICLE

    Applying ANN, ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2

    Amin Bemani1, Alireza Baghban2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5, 6, 7, Peter Csiba7, Annamaria R. Varkonyi-Koczy5, 7

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1175-1204, 2020, DOI:10.32604/cmc.2020.07723 - 30 April 2020

    Abstract In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel More >

Displaying 21-30 on page 3 of 27. Per Page