Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on growth and reactive oxygen metabolism of tomato fruits under low saline conditions

    WEI ZHOU, MENGMENG ZHANG, KEZHANG TAO, XIANCAN ZHU*

    BIOCELL, Vol.46, No.12, pp. 2575-2582, 2022, DOI:10.32604/biocell.2022.021910 - 10 August 2022

    Abstract Land salinization is a major form of land degradation, which is not conducive to the growth and quality of fruits and vegetables. Plant salt tolerance can be enhanced by arbuscular mycorrhizal fungi (AMF) or plant growth-promoting rhizobacteria (PGPR). This study examined the effects of inoculation with PGPR singly or in combination with AMF, on the growth and quality of tomato fruits under low saline conditions. Tomatoes were cultivated in a greenhouse with sterilized soil, inoculated with PGPR, AMF, or co-inoculated with PGPR and AMF, and NaCl solution (1%) was added to the soil. The results… More >

  • Open Access

    ARTICLE

    Significant changes in arbuscular mycorrhizal community and soil physicochemical properties during the saline-alkali grassland vegetation succession

    YAJIE LIU, LINLIN FANG, CHUNXUE YANG*

    BIOCELL, Vol.46, No.11, pp. 2475-2488, 2022, DOI:10.32604/biocell.2022.021477 - 07 July 2022

    Abstract Arbuscular mycorrhizal (AM) fungi are widely distributed in various habitats, and the community composition varies in response to the changing environmental conditions. To explore the response of community composition to the succession of saline-alkali land, soil samples were collected from three succession stages of Songnen saline-alkali grassland. Subsequently, the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing. Then, the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses. The soil properties improved with the succession of saline-alkali grassland. There was… More >

  • Open Access

    ARTICLE

    Isolation and species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Puccinellia tenuiflora of Songnen saline-alkaline grassland, China

    YUNHUI ZHOU, YAJIE LIU, WENNA ZHAO, FEI CHEN, YUDAN WANG, CHUNXUE YANG

    BIOCELL, Vol.46, No.11, pp. 2465-2474, 2022, DOI:10.32604/biocell.2022.021016 - 07 July 2022

    Abstract Salinization has led to the deterioration of the ecological environment, affected the growth of plants, and hindered the development of agriculture and forestry. Arbuscular mycorrhizal (AM) fungi, as important soil microorganisms, play significant physiological and ecological roles in promoting plant nutrient absorption and improving soil structure. Puccinellia tenuiflora (Turcz.) Scribn. et Merr. in Songnen saline-alkaline grassland was selected as the research object to observe AM fungal colonization of the roots and explore the species and diversity of AM fungi in symbiotic association with P. tenuiflora. This study showed that AM fungi colonized in P. tenuiflora roots and formed… More >

  • Open Access

    ARTICLE

    Mycorrhiza improves cold tolerance of Satsuma orange by inducing antioxidant enzyme gene expression

    MING-AO CAO1, FEI ZHANG2, ELSAYED FATHI ABD_ALLAH3, QIANGSHENG WU1,*

    BIOCELL, Vol.46, No.8, pp. 1959-1966, 2022, DOI:10.32604/biocell.2022.020391 - 22 April 2022

    Abstract A potted experiment was carried out to study the effect of an arbuscular mycorrhizal fungus (Diversispora versiformis) and arbuscular mycorrhizal like fungus (Piriformospora indica) on antioxidant enzyme defense system of Satsuma orange (Citrus sinensis cv. Oita 4) grafted on Poncirus trifoliata under favourable temperature (25°C) and cold temperature (0°C) for 12 h. Such short-term treatment of cold temperature did not cause any significant change in root fungal colonization and spore density in soil. Under cold stress, D. versiformis inoculation did not change the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in leaves and roots, whereas P.… More >

  • Open Access

    ARTICLE

    Claroideoglomus etunicatum improved the growth and saline– alkaline tolerance of Potentilla anserina by altering physiological and biochemical properties

    YUNHUI ZHOU, YAJIE LIU, YUDAN WANG, CHUNXUE YANG*

    BIOCELL, Vol.46, No.8, pp. 1967-1978, 2022, DOI:10.32604/biocell.2022.019304 - 22 April 2022

    Abstract To investigate the effects of arbuscular mycorrhizal (AM) fungi on the growth and saline–alkaline tolerance of Potentilla anserina L., the seedlings were inoculated with Claroideoglomus etunicatum (W.N. Becker & Gerd.) C. Walker & A. Schüßler in pot cultivation. After 90 days of culture, saline–alkaline stress was induced with NaCl and NaHCO3 solution according to the main salt components in saline–alkaline soils. Based on the physiological response of P. anserina to the stress in the preliminary experiment, the solution concentrations of 0 mmol/L, 75 mmol/L, 150 mmol/L, 225 mmol/L and 300 mmol/L were treated with stress for 10 days,… More >

  • Open Access

    ARTICLE

    Mycorrhiza improves plant growth and photosynthetic characteristics of tea plants in response to drought stress

    FENGJUN DAI1, ZIYI RONG1, QIANGSHENG WU1, ELSAYED FATHI ABD_ALLAH3, CHUNYAN LIU1,2,*, SHENGRUI LIU2,*

    BIOCELL, Vol.46, No.5, pp. 1339-1346, 2022, DOI:10.32604/biocell.2022.018909 - 06 January 2022

    Abstract Tea plants are sensitive to soil moisture deficit, with the level of soil water being a critical factor affecting their growth and quality. Arbuscular mycorrhizal fungi (AMF) can improve water and nutrient absorption, but it is not clear whether AMF can improve the photosynthetic characteristics of tea plants. A potted study was conducted to determine the effects of Claroideoglomus etunicatum on plant growth, leaf water status, pigment content, gas exchange, and chlorophyll fluorescence parameters in Camellia sinensis cv. Fuding Dabaicha under well-watered (WW) and drought stress (DS) conditions. Root mycorrhizal colonization and soil hyphal length were significantly… More >

  • Open Access

    REVIEW

    Mycorrhiza and Phosphate Solubilizing Bacteria: Potential Bioagents for Sustainable Phosphorus Management in Agriculture

    Fazli Wahid1, Muhammad Sharif2, Shah Fahad3, Amjad Ali4, Muhammad Adnan1, Rafiullah1, Shah Saud5, Subhan Danish6,*, Muhammad Arif Ali6, Niaz Ahmed6, Hüseyin Arslan7, Doğan Arslan8, Murat Erman8, Ayman EL Sabagh8,9,*, Fatemeh Gholizadeh10, Rahul Datta11

    Phyton-International Journal of Experimental Botany, Vol.91, No.2, pp. 257-278, 2022, DOI:10.32604/phyton.2022.016512 - 26 September 2021

    Abstract Phosphorus (P) is a critical nutrient that plays an essential role in improving soil fertility for optimum plant growth and productivity. It is one of the most deficient macro-nutrients in agricultural soils after nitrogen and is considered inadequate for plant growth and production. To P availability in soils, the farmers are applying huge amounts of synthetic P fertilizers that adversely affect the wider environment, groundwater, soil fertility and microbial population. Many beneficial microbes are known to release and supply soluble P for improving growth and yield of a variety of plants in a sustainable manner… More >

  • Open Access

    REVIEW

    Pathways of Phosphorus Absorption and Early Signaling between the Mycorrhizal Fungi and Plants

    Griselda Madrid-Delgado1,#, Marcos Orozco-Miranda1,#, Mario Cruz-Osorio1,#, Ofelia Adriana Hernández-Rodríguez1, Raúl Rodríguez-Heredia2, Melchor Roa-Huerta2, Graciela Dolores Avila-Quezada1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.5, pp. 1321-1338, 2021, DOI:10.32604/phyton.2021.016174 - 27 May 2021

    Abstract

    This review highlights the key role that mycorrhizal fungi play in making phosphorus (Pi) more available to plants, including pathways of phosphorus absorption, phosphate transporters and plant-mycorrhizal fungus symbiosis, especially in conditions where the level of inorganic phosphorus (Pi) in the soil is low. Mycorrhizal fungi colonization involves a series of signaling where the plant root exudates strigolactones, while the mycorrhizal fungi release a mixture of chito-oligosaccharides and liposaccharides, that activate the symbiosis process through gene signaling pathways, and contact between the hyphae and the root. Once the symbiosis is established, the extraradical mycelium acts as

    More >

  • Open Access

    ARTICLE

    Mycorrhizas Affect Polyphyllin Accumulation of Paris polyphylla var. yunnanensis through Promoting PpSE Expression

    Hailing Li1,2, Lingfeng Xu1, Zhuowei Li1, Shunxin Zhao1, Dongqin Guo1, Lu Rui1,*, Nong Zhou1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.5, pp. 1535-1547, 2021, DOI:10.32604/phyton.2021.015697 - 27 May 2021

    Abstract Paris polyphylla var. yunnanensis is a traditional Chinese medicinal plant, in which polyphyllin as the main medicinal component is an important secondary metabolite with bioactivity. Arbuscular mycorrhizal fungi (AMF) have multiple positive effects on plants, while it is not clear whether AMF increase the content of medicinal components in medicinal plants. In this study, a total of nine AMF treatments were laid to analyze the mycorrhizal effect on polyphyllin accumulation and PpHMGR and PpSE expression of P. polyphylla var. yunnanensis. AMF increased the content of polyphyllin in the cultivated variety with low relation to the increase of inoculation intensity. More >

  • Open Access

    ARTICLE

    Colonization Characteristics and Diversity of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Iris lactea in Songnen Saline-alkaline Grassland

    Chunxue Yang*, Yajie Liu, Wenna Zhao, Na Wang

    Phyton-International Journal of Experimental Botany, Vol.90, No.3, pp. 719-729, 2021, DOI:10.32604/phyton.2021.015024 - 30 March 2021

    Abstract To understand arbuscular mycorrhizal (AM) fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances, Iris lactea, which grows in the Songnen saline-alkaline grassland with a high ornamental value, was selected as the experimental material, and the colonization characteristics of its roots and the AM fungal diversity in its rhizosphere were explored. The results of the observations and calculations of mycorrhizae from ten different samples showed that AM fungi colonized the roots of I. lactea and formed Arum-type mycorrhizal structures. There was a significant correlation between soil spore density and pH value, while the colonization… More >

Displaying 11-20 on page 2 of 30. Per Page