Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    Impacts of Heat Flux Distribution, Sloping Magnetic Field and Magnetic Nanoparticles on the Natural Convective Flow Contained in a Square Cavity

    Latifa M. Al-Balushi, M. M. Rahman*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 441-463, 2020, DOI:10.32604/fdmp.2020.08551

    Abstract In the present paper, the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically. The nondimensional governing equations are solved in the framework of a finite element method implemented using the Galerkin approach. The role played by numerous model parameters in influencing the emerging thermal and concentration fields is examined; among them are: the location of the heat source and its lengthH*, the magnitude of the thermal Rayleigh number, the nanoparticles shape and volume fraction, and the Hartmann number. It… More >

  • Open Access

    ARTICLE

    Exact Solution of Non-Newtonian Blood Flow with Nanoparticles through Porous Arteries: A Comparative Study

    Wafaa Alharbi1, Abdulrahman Aljohani1, Essam El-Zahar2, 3, *, Abdelhalim Ebaid1

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1143-1157, 2020, DOI:10.32604/cmc.2020.08875

    Abstract In this paper, the mathematical model describing the third-grade nonNewtonian blood flow suspended with nanoparticles through porous arteries is exactly solved. The present physical model was solved in the research literature via the optimal homotopy analysis method and the collocation method, where the obtained solution was compared with the numerical fourth-order Runge-Kutta solution. However, the present paper only introduces a new approach to obtain the exact solution of the concerned system and implements such exact solution as a reference to validate the published approximate solutions. Several remarks on the previously published results are observed and discussed in detail through tables… More >

  • Open Access

    ARTICLE

    Experimental Study on Flow and Heat Transfer Characteristics of Nanofluids in a Triangular Tube at Different Rotation Angles

    Cong Qi1,2,*, Chengchao Wang1,2, Jinghua Tang1,2, Dongtai Han2

    Energy Engineering, Vol.117, No.2, pp. 63-78, 2020, DOI:10.32604/EE.2020.010433

    Abstract Because of the poor thermal performance of ordinary tubes, a triangular tube was used to replace the smooth channel in the heat transfer system, and nanofluids were used to take the place of ordinary fluids as the heat transfer medium. High stability nanofluids were prepared, and an experimental set on flow and heat exchange was established. Effects of triangular tube rotation angles (α = 0°, 30°, 60°) as well as mass fractions of nanofluids (ω = 0.1%, 0.3%, 0.5%) on heat exchange and flow performance were experimentally considered at Reynolds numbers (Re = 800–8000). It was shown that the triangular… More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer by Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 181-198, 2020, DOI:10.32604/fdmp.2020.07804

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

  • Open Access

    ARTICLE

    MHD Boundary Layer Flow of a Power-Law Nanofluid Containing Gyrotactic Microorganisms Over an Exponentially Stretching Surface

    Mohamed Abd El-Aziz1, 2, A. M. Aly1, 3, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 525-549, 2020, DOI:10.32604/cmc.2020.08576

    Abstract This study focusses on the numerical investigations of boundary layer flow for magnetohydrodynamic (MHD) and a power-law nanofluid containing gyrotactic microorganisms on an exponentially stretching surface with zero nanoparticle mass flux and convective heating. The nonlinear system of the governing equations is transformed and solved by Runge-Kutta-Fehlberg method. The impacts of the transverse magnetic field, bioconvection parameters, Lewis number, nanofluid parameters, Prandtl number and power-law index on the velocity, temperature, nanoparticle volume fraction, density of motile microorganism profiles is explored. In addition, the impacts of these parameters on local skin-friction coefficient, local Nusselt, local Sherwood numbers and local density number… More >

  • Open Access

    ARTICLE

    Radiation and Chemical Reaction Effects on Nanofluid Flow Over a Stretching Sheet

    Anupam Bhandari1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 557-582, 2019, DOI:10.32604/fdmp.2019.04108

    Abstract The present research aims to examine the steady state of the two-dimensional incompressible magnetohydrodynamics (MHD) flow of a micropolar nanofluid over a stretching sheet in the presence of chemical reactions, radiation and viscous dissipation. The effect of particle rotation is taken into account. A conducting fluid passes over a semi-infinite plate with variable temperature while a magnetic field is directed in the transverse direction. Results for velocity, angular momentum, temperature and concentration profiles are obtained for various values of Eckert number, Schmidt number, Prandtl number, thermophosis parameter and Brownian motion parameters. A similarity approach is used to transform the original… More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer By Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 253-270, 2019, DOI:10.32604/fdmp.2019.03896

    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

  • Open Access

    ARTICLE

    A Controlled Conditions of Dynamic Cold Storage Using Nano fluid as PCM

    Bin Liu1, Zhaodan Yang1, Yahui Wang1, Rachid Bennacer1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 37-47, 2017, DOI:10.3970/fdmp.2017.013.037

    Abstract The dynamic thermal history of storage product system is related to the insulation and also to the inertia. Use a new porous media doped with nanofluid PCM to improve the system efficiency. The analysis of the porous sponge thickness with 8 mm, 16 mm and 20 mm, the integrated nanofluids with 0.1%, 0.15% and 0.2%, the mass of the PCM and the initial temperature of the stored product with -1°C, 4°C, 12°C is achieved in order to underline the advantages of the new saturated porous media (sponges) with the phase change material (PCM) /Al2O3-H2O nanofluid. The carrots are used as… More >

  • Open Access

    ABSTRACT

    Analysis on the Thermal Performance of Nanofluids As Working Fluid With Porous Heat Sinks: Applications in Electronics Cooling

    Ziad Saghir, Cayley Delisle, Christopher Welsford*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 19-19, 2019, DOI:10.32604/icces.2019.05145

    Abstract The enhancement of consumer and industrial electronics has led to an increase in both the power and compactness of the products available. However, with these increases follows a subsequent increase in the thermal losses experienced across, for example, a central processing unit (CPU). As well, the need to dissipate waste thermal energy is compounded by the increased compactness. As the chipsets become smaller, the threads contained therein also reduce in size and as such become more sensitive to temperature gradients which can cause deformation. Although this deformation is miniscule, its continuous repetition can ultimately result in a thermally induced fatigue… More >

  • Open Access

    ARTICLE

    Mass Transfer of MHD Nanofluid in Presence of Chemical Reaction on A Permeable Rotating Disk with Convective Boundaries, Using Buongiorno's Model

    Muhammad Shoaib Arif 1, *, Yasir Nawaz1, Mairaj Bibi2, Zafar Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 31-49, 2018, DOI: 10.31614/cmes.2018.00434

    Abstract This communiqué is opted to study the flow of nanofluid because of heated disk rotation subjected to the convective boundaries with chemical reaction of first order. Wherein Buongiorno’s model for nanofluids is used due to its wide range of applications and the rotating disk under investigation is permeable. Small magneto Reynolds parameter and boundary layer assumptions are carried out to formulate the problem. The system of nonlinear partial differential equations governing the flow problem is converted into the set of ordinary differential equations by using particular relations known as Von Karman transformations. The complicated set of coupled ordinary differential equations… More >

Displaying 131-140 on page 14 of 153. Per Page