Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (115)
  • Open Access

    ARTICLE

    Lattice Boltzmann Simulation of MHD Double Dispersion Natural Convection in a C-shaped Enclosure in the Presence of a Nanofluid

    Bouchmel Mliki, Mohamed Ammar Abbassi, Ahmed Omri

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 87-114, 2015, DOI:10.3970/fdmp.2015.011.087

    Abstract MHD double-diffusive natural convective flow in a C-shaped enclosure filled with a Cu/Water nanofluid is investigated numerically using the Lattice Boltzmann Method (LBM). Much care is devoted to the validation of the numerical code. The effects exerted on the flow, concentration and temperature fields by different parameters such as the Rayleigh number (103−106), the nanoparticle volume concentration (0−0,1), the Lewis number (1-5), the Hartmann number (0−30) and different types of nanoparticles (Cu, Ag, Al2O3 and TiO3 are assessed in detail. Results for stream function, Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. Results indicate that the… More >

  • Open Access

    ARTICLE

    Contribution to Improving the Performance of a Wind Turbine Using Natural Convection

    M. Kriraa1,2, M.EL Alami1, M. Abouricha1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.4, pp. 443-464, 2014, DOI:10.3970/fdmp.2014.010.443

    Abstract Natural Convection in a vertical channel with internal objects is encountered in several technological applications, among them particular interest of heat dissipation from electronic circuits, refrigerators, heat exchangers, nuclear reactors fuel elements, dry cooling towers, home ventilation, etc. This numerical study deals with the study of natural convection in a vertical convergent channel with a circular block. The considered parameters are 104Ra ≤ 106, Prandtl number Pr = 0.71, channel height 10 ≤ A ≤ 30, inclination angle of the channel φ = 0,2.86°,5.74°. The size block conductivity and the block radius are assumed to be constant Λ… More >

  • Open Access

    ARTICLE

    Numerical Study of Combined Natural Convection-surface Radiation in a Square Cavity

    S. Hamimid1,2, M. Guellal1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 377-393, 2014, DOI:10.3970/fdmp.2014.010.377

    Abstract Combined laminar natural convection and surface radiation in a differentially heated square cavity has been investigated by a finite volume method through the concepts of staggered grid and SIMPLER approach. A power scheme has been also used in approximating advection–diffusion terms, determining the view factors by means of analytical expressions. The effect of emissivity on temperature and velocity profiles within the enclosure has been analyzed. In addition, results for local and average convective and radiative Nusselt numbers are presented and discussed for various conditions. More >

  • Open Access

    ARTICLE

    Numerical Study of Melting Coupled Natural Convection Around Localized Heat Sources

    Mustapha Faraji1, El Alami Mustapha, Najam Mostafa

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 279-298, 2014, DOI:10.3970/fdmp.2014.010.279

    Abstract A study is reported of heat transfer and melting in a fan-less thermal management system consisting of an insulated horizontal cavity filled with a phase change material (PCM) and heated from below by a conducting plate supporting three identical protruding heat sources. Such a PCM enclosure can be used as a heat sink for the cooling of electronic components. The advantage of this cooling strategy is that PCMs characterized by high energy storage density and small transition temperature interval, are able to store a high amount of heat (thereby providing efficient passive cooling). A two-dimensional simulation model is developed that… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer due to Natural Convection along a Wavy Vertical Plate with Opposing Thermal and Solutal Buoyancy Effects

    M. Si Abdallah1, B. Zeghmati2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 261-277, 2014, DOI:10.3970/fdmp.2014.010.261

    Abstract In the present work, a numerical analysis is performed of the combined effects of (opposing) thermal and solutal buoyancy in the presence of a wavy (vertical) surface. The boundary layer equations and related boundary conditions are discretized using a finite volume scheme and solved numerically using a Gauss-Seidel algorithm. The influence of the wavy geometry (in terms of related wavelength L and amplitude a) and the buoyancy ratio N on the local Nusselt and Sherwood numbers and on the skin-friction coefficient are studied in detail. Results show that when Pr < Sc, negative values of the buoyancy parameter, N tend… More >

  • Open Access

    ARTICLE

    MHD Natural Convection in a Nanofluid-filled Enclosure with Non-uniform Heating on Both Side Walls

    Imen Mejri1,2, Ahmed Mahmoudi1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 83-114, 2014, DOI:10.3970/fdmp.2014.010.083

    Abstract This study examines natural convection in a square enclosure filled with a water-Al2O3 nanofluid and subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. A Lattice Boltzmann method (LBM) is applied to solve the governing equations for fluid velocity and temperature. The following parameters and related ranges are considered: Rayleigh number of the base fluid, from Ra=103 to 106, Hartmann number from Ha=0 to 90, phase deviation (γ =0, π/4, π/2, 3π/4 and π) and solid volume fraction of the nanoparticles between ø = 0 and 6%.… More >

  • Open Access

    ARTICLE

    Optimal Formulation of Nanofluids for Maximum Free Convection Heat Transfer from Horizontal Isothermal Cylinders

    Massimo Corcione1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 175-200, 2011, DOI:10.3970/fdmp.2011.007.175

    Abstract Free convection heat transfer in nanofluids from horizontal isothermal cylinders is investigated theoretically. The main idea upon which the present work is based is that nanofluids behave more like a single-phase fluid rather than like a conventional solid-liquid mixture. This assumption implies that all the convective heat transfer correlations available in the literature for single-phase flows can be extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this connection, two empirical equations, based on a wide variety of experimental data reported in the literature, are proposed… More >

  • Open Access

    ARTICLE

    Improving the Efficiency of Wind Power System by Using Natural Convection Flows

    M. Kriaa1, M. El Alami1,2, M. Najam1, E. Semma3

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 125-140, 2011, DOI:10.3970/fdmp.2011.007.125

    Abstract In this paper a numerical study of natural convection in a two dimensional convergent channel, with or without rectangular block, is carried out. The block is placed at the channel outlet and its thermal conductivity is set equal to that of air. One of channel planes is heated at constant temperature TH. The other one is maintained cold at TC < TH. The governing equations are solved using a finite volume method and the SIMLEC algorithm for the velocity-pressure coupling is used. Special emphasis is given to detail the effect of the block size and Rayleigh number on the dynamics… More >

  • Open Access

    ARTICLE

    Natural Convection in an Inclined T-Shaped Cavity

    Hicham Rouijaa1, Mustapha El Alami2, El Alami Semma3, Mostafa Najam2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 57-70, 2011, DOI:10.3970/fdmp.2011.007.057

    Abstract This article presents a numerical study on natural convection in a bidimensional inclined "T"-shaped cavity. The governing equations are solved in the framework of a control-volume method resorting to the SIMPLEC algorithm (for the treatment of pressure-velocity coupling). Special emphasis is given to the investigation of the effect of inclination on the heat transfer and mass flow rate. Results are discussed for Prandtl number Pr=0.72, geometry with: opening width C=0.15, blocks gap D=0.5, blocks height, B=0.5 and different values of the Rayleigh number (104 ≤ Ra ≤ 106). More >

  • Open Access

    ARTICLE

    Marangoni-Natural Convection in Liquid Metals in the Presence of a Tilted Magnetic Field

    S. Hamimid1, A.Amroune1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 369-384, 2010, DOI:10.3970/fdmp.2010.006.369

    Abstract The Navier-Stokes and energy equations are numerically solved to investigate two-dimensional convection (originating from the combined effect of buoyancy and surface tension forces) in a liquid metal subjected to transverse magnetic fields. In particular, a laterally heated horizontal cavity with aspect ratio (height/width) =1 and Pr=0.015 is considered (typically associated with the horizontal Bridgman crystal growth process and commonly used for benchmarking purposes). The effect of a uniform magnetic field with different magnitudes and orientations on the stability of the two distinct convective solution branches (with a single-cell or two-cell pattern) of the steady-state flows is investigated. The effects induced… More >

Displaying 91-100 on page 10 of 115. Per Page