Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (115)
  • Open Access

    ARTICLE

    Local RBF Collocation Method for Darcy Flow

    G. Kosec1, B. Šarler1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 197-208, 2008, DOI:10.3970/cmes.2008.025.197

    Abstract This paper explores the application of the mesh-free Local Radial Basis Function Collocation Method (LRBFCM) in solution of coupled heat transfer and fluid flow problems in Darcy porous media. The involved temperature, velocity and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF's. The energy and momentum equations are solved through explicit time stepping. The pressure-velocity coupling is calculated iteratively, with pressure correction, predicted from the local continuity equation violation. This formulation does not require… More >

  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in Square Tilted Solar Cavity Considering Extended Domain

    Toufik Arrif1,2, Abdelmadjid Chehhat3,4,*, Essam Abo-Serie5, Adel Benchabane2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.4, pp. 223-242, 2018, DOI:10.32604/fdmp.2018.01799

    Abstract This work presents a numerical investigation on heat transfer and fluid-dynamic aspects for a solar open cavities in an extended fluid flow domain. The vertical wall inside the open cavities facing the aperture is assumed to be isothermal while the other walls are kept insulated. Heat transfer steady laminar natural convection is studied by solving the non-dimensional governing equations of mass, momentum and energy in the framework of a finite volume method. The analysis are carried out under Rayleigh number range of 9.41×105 to 3.76×106, inclination 0° to 90° and opening ratio 0.25, 0.5 and 1. The model results for… More >

  • Open Access

    ARTICLE

    A Numerical Study of the Transitions of Laminar Natural Flows in a Square Cavity

    Nouri Sabrina1,*, Abderrahmane Ghezal1, Said Abboudi2, Pierre Spiteri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 121-135, 2018, DOI: 10.3970/fdmp.2018.02045

    Abstract This paper deals with the numerical study of heat and mass transfer occurring in a cavity filled with a low Prandtl number liquid. The model includes the momentum, energy and mass balance equations. These equations are discretized by a finite volume technique and solved in the framework of a custom SIMPLER method developed in FORTRAN. The effect of the problem characteristic parameters, namely the Lewis and Prandtl numbers, on the instability of the flow and related solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for values of the… More >

  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in a Right Triangular Enclosure with Sinusoidal Hot Wall and Different Configurations of Cold Walls

    Manoj Kr. Triveni1,*, Rajsekhar Panua2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 1-21, 2018, DOI:10.3970/fdmp.2018.014.001

    Abstract The numerical investigation of present work examines the free convection cooling of the base hot wall of a right-angled triangular cavity filled with water. The outline of the base wall is changed from smooth to sinusoidal shapes with different heights. The width (w) of the wave is fixed at 0.2 L and the height (h) of the sinusoidal shape wall is varied from 0.01 H to 0.03 H. The hot wall is cooled from the partially active side and inclined walls which are detached from the middle and structured in four different configurations namely AB, BC, AD, and CD. The… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall

    Mohamed Ammar Abbassi1, Bouchmel Mliki1, Ridha Djebali1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 59-83, 2017, DOI:10.3970/fdmp.2017.013.059

    Abstract This article reports a numerical study of nanoparticle Brownian motion and magnetic field effects by natural convection in a nanofluid-filled open cavity with non uniform boundary condition. Lattice Boltzmann Method (LBM) is used to simulate nanofluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity and effective viscosity is considered and examined. Simulations have been carried out for the pertinent parameters in the following ranges: Rayleigh number (Ra=103−106), Hartmann number (Ha=0-60), nanoparticle volume concentration (Φ=0–0.04) and heat generation or… More >

  • Open Access

    ARTICLE

    Investigation of the Melting Coupled Natural Convection of Nano Phase Change Material: A Fan Less Cooling of Heat Sources

    Mustapha FARAJI1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 19-36, 2017, DOI:10.3970/fdmp.2017.013.019

    Abstract A two-dimensional numerical model that accounts for heat transfer by conduction and natural convection in the molten region of nano enhanced Phase Change Material (PCM) is performed. Numerical investigations were conducted using an enthalpy- porosity method in order to examine the impact of the dispersion of copper (CuO) nanoparticles on the heat source temperature and the effect on the heat sink secured working time and the melting rate. Results show that heat spreads more easily along the conducting plate and to the PCM and, consequently, the PCM melts rapidly and the heat source is efficiency cooled by the addition of… More >

  • Open Access

    ARTICLE

    Natural Convection in a Square Cavity: Numerical Study for Different values of Prandtl Number

    ADNANI Massinissa1, MEZIANI Bachir2, OURRAD Ouerdia2, ZITOUNE Mounir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.1, pp. 1-14, 2016, DOI:10.3970/fdmp.2016.012.001

    Abstract A numerical study of natural convection in a square cavity subjected to the thermals boundary conditions on the sidewalls is presented and discussed. The fluid is Newtonian and equations governing the flow field and the heat transfer are given in dimensionless form. The finite volume method was adopted to solve the algebraic system. Influence of the Prandtl and the Rayleigh numbers on heat transfer and the flow field is illustrated and discussed as the stream functions, isotherms, horizontal velocity, local and average Nusselt numbers. Results indicate that improved heat transfer is more pronounced with increasing Rayleigh number. In particular, at… More >

  • Open Access

    ARTICLE

    Natural Convection in a Square Cavity Filled with Nanofluids

    Abd el malik Bouchoucha1,2, Rachid Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 279-300, 2015, DOI:10.3970/fdmp.2015.011.279

    Abstract The present paper deals with a numerical study of natural convection in a square cavity filled with a nanofluid. The left and right vertical walls of the cavity are maintained at a local temperature Th (heat source) and a local cold temperature TC, respectively. Horizontal walls are assumed to be adiabatic. The governing equations are discretized by using the finite volume method and solved by the SIMPLER algorithm. Our computer fortran code is validated through comparison with numerical results found in the literature. Results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for the Rayleigh number… More >

  • Open Access

    ARTICLE

    Analysis of Natural Convection in a Nanofluid-Filled Open Cavity with a Sinusoidal Boundary Condition in the Presence of a Magnetic Field

    Imen Mejri1,2, Ahmed Mahmoudi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 171-195, 2015, DOI:10.3970/fdmp.2015.011.171

    Abstract This paper examines natural convection in an open cavity with a sinusoidal thermal boundary condition. The cavity is filled with a water-Al2O3 nanofluid and subjected to a magnetic field. The Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature. The study has been carried out considering parameters in the following ranges: Rayleigh number of the base fluid, Ra = 103 to 106, Hartmann number varied from Ha = 0 to 60, phase deviation γ = 0, π4, π2, 3 π4 and π and solid volume fraction of nanoparticles between π = 0 and 6%.… More >

  • Open Access

    ARTICLE

    Three-dimensional Numerical Study of the Effect of Heating Sources Dimension on Natural Convection in a Cavity Submitted to Constant Heat Flux

    L. Belarche1,2, B. Abourida1, S. Smolen3

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 157-170, 2015, DOI:10.3970/fdmp.2015.011.157

    Abstract Natural convection in a cubical cavity, discretely heated is studied numerically using a three-dimensional finite volume formulation. Two heating square portions are placed on the vertical wall of the enclosure, while the rest of the considered wall is adiabatic. The opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. Effects of the heating sections dimensions ε (0.15 ≤ ε ≤ 0.35) and the Rayleigh number Ra (103Ra ≤ 107) on the fluid flow and the heat transfer within the cavity are studied. The obtained results show that the flow intensity and… More >

Displaying 81-90 on page 9 of 115. Per Page