Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,364)
  • Open Access

    ARTICLE

    Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2391-2415, 2025, DOI:10.32604/cmes.2025.063558 - 30 May 2025

    Abstract This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service (DDoS) attacks in 5th generation technology standard (5G) slicing networks. The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data. These representations are then used as input for a support vector machine (SVM)-based metadata classifier, enabling precise detection of attack traffic. This architecture is designed to achieve both high detection accuracy and training efficiency, while adapting flexibly to the diverse service requirements and complexity of 5G network… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Lip-Reading for Vocal Impaired Patient Rehabilitation

    Chiara Innocente1,*, Matteo Boemio2, Gianmarco Lorenzetti2, Ilaria Pulito2, Diego Romagnoli2, Valeria Saponaro2, Giorgia Marullo1, Luca Ulrich1, Enrico Vezzetti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1355-1379, 2025, DOI:10.32604/cmes.2025.063186 - 30 May 2025

    Abstract Lip-reading technology, based on visual speech decoding and automatic speech recognition, offers a promising solution to overcoming communication barriers, particularly for individuals with temporary or permanent speech impairments. However, most Visual Speech Recognition (VSR) research has primarily focused on the English language and general-purpose applications, limiting its practical applicability in medical and rehabilitative settings. This study introduces the first Deep Learning (DL) based lip-reading system for the Italian language designed to assist individuals with vocal cord pathologies in daily interactions, facilitating communication for patients recovering from vocal cord surgeries, whether temporarily or permanently impaired. To… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services

    Sangmin Kim1, Byeongcheon Lee1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2079-2108, 2025, DOI:10.32604/cmes.2025.061653 - 30 May 2025

    Abstract The increased accessibility of social networking services (SNSs) has facilitated communication and information sharing among users. However, it has also heightened concerns about digital safety, particularly for children and adolescents who are increasingly exposed to online grooming crimes. Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims. However, research on grooming detection in South Korea remains limited, as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations, leading to inaccurate classifications. To address these issues, this study proposes a novel… More >

  • Open Access

    ARTICLE

    Integrating Speech-to-Text for Image Generation Using Generative Adversarial Networks

    Smita Mahajan1, Shilpa Gite1,2, Biswajeet Pradhan3,*, Abdullah Alamri4, Shaunak Inamdar5, Deva Shriyansh5, Akshat Ashish Shah5, Shruti Agarwal5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2001-2026, 2025, DOI:10.32604/cmes.2025.058456 - 30 May 2025

    Abstract The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs. However, humans naturally use speech for visualization prompts. Therefore, this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks (GANs) model, leveraging Speech-to-Text translation along with the CLIP + VQGAN model. The proposed method involves translating speech prompts into text, which is then used by the Contrastive Language-Image Pretraining (CLIP) + Vector Quantized Generative Adversarial Network (VQGAN) model to generate images. This paper outlines the steps required to implement such a… More >

  • Open Access

    ARTICLE

    A Design of Predictive Intelligent Networks for the Analysis of Fractional Model of TB-Virus

    Muhammad Asif Zahoor Raja1, Aqsa Zafar Abbasi2, Kottakkaran Sooppy Nisar3,*, Ayesha Rafiq2, Muhammad Shoaib4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2133-2153, 2025, DOI:10.32604/cmes.2025.058020 - 30 May 2025

    Abstract Being a nonlinear operator, fractional derivatives can affect the enforcement of existence at any given time. As a result, the memory effect has an impact on all nonlinear processes modeled by fractional order differential equations (FODEs). The goal of this study is to increase the fractional model of the TB virus’s (FMTBV) accuracy. Stochastic solvers have never been used to solve FMTBV previously. The Bayesian regularized artificial (BRA) method and neural networks (NNs), often referred to as BRA-NNs, were used to solve the FMTBV model. Each scenario features five occurrences that each reflect a different… More >

  • Open Access

    ARTICLE

    An Adaptive Virtual Impedance Control for Voltage and Frequency Regulation of Islanded Distribution Networks Based on Multi-Agent Consensus

    Jiran Zhu1, Silin He1, Chun Chen2,*, Li Zhou2, Hongqing Li1, Di Zhang1, Fenglin Hua1, Tianhao Zhu2

    Energy Engineering, Vol.122, No.6, pp. 2465-2483, 2025, DOI:10.32604/ee.2025.065453 - 29 May 2025

    Abstract In the islanded operation of distribution networks, due to the mismatch of line impedance at the inverter output, conventional droop control leads to inaccurate power sharing according to capacity, resulting in voltage and frequency fluctuations under minor external disturbances. To address this issue, this paper introduces an enhanced scheme for power sharing and voltage-frequency control. First, to solve the power distribution problem, we propose an adaptive virtual impedance control based on multi-agent consensus, which allows for precise active and reactive power allocation without requiring feeder impedance knowledge. Moreover, a novel consensus-based voltage and frequency control More >

  • Open Access

    ARTICLE

    Models for Predicting the Minimum Miscibility Pressure (MMP) of CO2-Oil in Ultra-Deep Oil Reservoirs Based on Machine Learning

    Kun Li1, Tianfu Li2,*, Xiuwei Wang1, Qingchun Meng1, Zhenjie Wang1, Jinyang Luo1,2, Zhaohui Wang1, Yuedong Yao2

    Energy Engineering, Vol.122, No.6, pp. 2215-2238, 2025, DOI:10.32604/ee.2025.062876 - 29 May 2025

    Abstract CO2 flooding for enhanced oil recovery (EOR) not only enables underground carbon storage but also plays a critical role in tertiary oil recovery. However, its displacement efficiency is constrained by whether CO2 and crude oil achieve miscibility, necessitating precise prediction of the minimum miscibility pressure (MMP) for CO2-oil systems. Traditional methods, such as experimental measurements and empirical correlations, face challenges including time-consuming procedures and limited applicability. In contrast, artificial intelligence (AI) algorithms have emerged as superior alternatives due to their efficiency, broad applicability, and high prediction accuracy. This study employs four AI algorithms—Random Forest Regression (RFR), Genetic… More >

  • Open Access

    ARTICLE

    Ultrashort-Term Power Prediction of Distributed Photovoltaic Based on Variational Mode Decomposition and Channel Attention Mechanism

    Zhebin Sun1, Wei Wang1, Mingxuan Du2, Tao Liang1, Yang Liu1, Hailong Fan3, Cuiping Li2, Xingxu Zhu2, Junhui Li2,*

    Energy Engineering, Vol.122, No.6, pp. 2155-2175, 2025, DOI:10.32604/ee.2025.062218 - 29 May 2025

    Abstract Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation. This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition (VMD) and Channel Attention Mechanism. First, Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power. Second, the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition (VMD). Finally, the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM… More >

  • Open Access

    ARTICLE

    Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting

    Huanan Yu, Chunhe Ye, Shiqiang Li*, He Wang, Jing Bian, Jinling Li

    Energy Engineering, Vol.122, No.6, pp. 2417-2448, 2025, DOI:10.32604/ee.2025.061214 - 29 May 2025

    Abstract With the increasing integration of large-scale distributed energy resources into the grid, traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load. Accounting for these issues, this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks. First, the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts, based on which, the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed. Subsequently, a multi-timescale optimization framework was constructed, incorporating the generation and load forecast uncertainties. More >

  • Open Access

    ARTICLE

    Advanced Nodal Pricing Strategies for Modern Power Distribution Networks: Enhancing Market Efficiency and System Reliability

    Ganesh Wakte1,*, Mukesh Kumar2, Mohammad Aljaidi3, Ramesh Kumar4, Manish Kumar Singla4

    Energy Engineering, Vol.122, No.6, pp. 2519-2537, 2025, DOI:10.32604/ee.2025.060658 - 29 May 2025

    Abstract Nodal pricing is a critical mechanism in electricity markets, utilized to determine the cost of power transmission to various nodes within a distribution network. As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations, traditional nodal pricing models often fall short to meet these new challenges. This research introduces a novel enhanced nodal pricing mechanism for distribution networks, integrating advanced optimization techniques and hybrid models to overcome these limitations. The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and… More > Graphic Abstract

    Advanced Nodal Pricing Strategies for Modern Power Distribution Networks: Enhancing Market Efficiency and System Reliability

Displaying 31-40 on page 4 of 3364. Per Page