Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Metaheuristic Optimization of Time Series Models for Predicting Networks Traffic

    Reem Alkanhel1, El-Sayed M. El-kenawy2,3, D. L. Elsheweikh4, Abdelaziz A. Abdelhamid5,6, Abdelhameed Ibrahim7, Doaa Sami Khafaga8,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 427-442, 2023, DOI:10.32604/cmc.2023.032885 - 06 February 2023

    Abstract Traffic prediction of wireless networks attracted many researchers and practitioners during the past decades. However, wireless traffic frequently exhibits strong nonlinearities and complicated patterns, which makes it challenging to be predicted accurately. Many of the existing approaches for predicting wireless network traffic are unable to produce accurate predictions because they lack the ability to describe the dynamic spatial-temporal correlations of wireless network traffic data. In this paper, we proposed a novel meta-heuristic optimization approach based on fitness grey wolf and dipper throated optimization algorithms for boosting the prediction accuracy of traffic volume. The proposed algorithm More >

  • Open Access

    ARTICLE

    Detection of Abnormal Network Traffic Using Bidirectional Long Short-Term Memory

    Nga Nguyen Thi Thanh, Quang H. Nguyen*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 491-504, 2023, DOI:10.32604/csse.2023.032107 - 20 January 2023

    Abstract Nowadays, web systems and servers are constantly at great risk from cyberattacks. This paper proposes a novel approach to detecting abnormal network traffic using a bidirectional long short-term memory (LSTM) network in combination with the ensemble learning technique. First, the binary classification module was used to detect the current abnormal flow. Then, the abnormal flows were fed into the multilayer classification module to identify the specific type of flow. In this research, a deep learning bidirectional LSTM model, in combination with the convolutional neural network and attention technique, was deployed to identify a specific attack. More >

  • Open Access

    ARTICLE

    Design of Fuzzy Logic Control Framework for QoS Routing in MANET

    M. Vargheese1,*, S. Vanithamani2, D. Stalin David3, Ganga Rama Koteswara Rao4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3479-3499, 2023, DOI:10.32604/iasc.2023.030948 - 17 August 2022

    Abstract Wireless networks with no infrastructure arise as a result of multiple wireless devices working together. The Mobile Ad hoc Network (MANET) is a system for connecting independently located Mobile Nodes (MNs) via wireless links. A MANET is self-configuring in telecommunications, while MN produces non-infrastructure networks that are entirely decentralized. Both the MAC and routing layers of MANETs take into account issues related to Quality of Service (QoS). When culling a line of optical discernment communication, MANET can be an effective and cost-saving route cull option. To maintain QoS, however, more or fewer challenges must be overcome. This… More >

  • Open Access

    ARTICLE

    A Network Traffic Prediction Algorithm Based on Prophet-EALSTM-GPR

    Guoqing Xu1, Changsen Xia1, Jun Qian1, Guo Ran3, Zilong Jin1,2,*

    Journal on Internet of Things, Vol.4, No.2, pp. 113-125, 2022, DOI:10.32604/jiot.2022.036066 - 28 March 2023

    Abstract Huge networks and increasing network traffic will consume more and more resources. It is critical to predict network traffic accurately and timely for network planning, and resource allocation, etc. In this paper, a combined network traffic prediction model is proposed, which is based on Prophet, evolutionary attention-based LSTM (EALSTM) network, and Gaussian process regression (GPR). According to the non-smooth, sudden, periodic, and long correlation characteristics of network traffic, the prediction procedure is divided into three steps to predict network traffic accurately. In the first step, the Prophet model decomposes network traffic data into periodic and More >

  • Open Access

    ARTICLE

    Network Traffic Obfuscation System for IIoT-Cloud Control Systems

    Yangjae Lee1, Sung Hoon Baek2, Jung Taek Seo3, Ki-Woong Park1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4911-4929, 2022, DOI:10.32604/cmc.2022.026657 - 21 April 2022

    Abstract One of the latest technologies enabling remote control, operational efficiency upgrades, and real-time big-data monitoring in an industrial control system (ICS) is the IIoT-Cloud ICS, which integrates the Industrial Internet of Things (IIoT) and the cloud into the ICS. Although an ICS benefits from the application of IIoT and the cloud in terms of cost reduction, efficiency improvement, and real-time monitoring, the application of this technology to an ICS poses an unprecedented security risk by exposing its terminal devices to the outside world. An adversary can collect information regarding senders, recipients, and prime-time slots through… More >

  • Open Access

    ARTICLE

    An Efficient Intrusion Detection Framework in Software-Defined Networking for Cybersecurity Applications

    Ghalib H. Alshammri1,2, Amani K. Samha3, Ezz El-Din Hemdan4, Mohammed Amoon1,4, Walid El-Shafai5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3529-3548, 2022, DOI:10.32604/cmc.2022.025262 - 29 March 2022

    Abstract Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process. In recent times, the most complex task in Software Defined Network (SDN) is security, which is based on a centralized, programmable controller. Therefore, monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment. Consequently, this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms: K-means, Farthest First, Canopy, Density-based algorithm, and Exception-maximization (EM), using the Waikato Environment for Knowledge Analysis (WEKA) software to compare… More >

  • Open Access

    ARTICLE

    VPN and Non-VPN Network Traffic Classification Using Time-Related Features

    Mustafa Al-Fayoumi1, Mohammad Al-Fawa’reh2, Shadi Nashwan3,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3091-3111, 2022, DOI:10.32604/cmc.2022.025103 - 29 March 2022

    Abstract The continual growth of the use of technological appliances during the COVID-19 pandemic has resulted in a massive volume of data flow on the Internet, as many employees have transitioned to working from home. Furthermore, with the increase in the adoption of encrypted data transmission by many people who tend to use a Virtual Private Network (VPN) or Tor Browser (dark web) to keep their data privacy and hidden, network traffic encryption is rapidly becoming a universal approach. This affects and complicates the quality of service (QoS), traffic monitoring, and network security provided by Internet… More >

  • Open Access

    ARTICLE

    Optimized Generative Adversarial Networks for Adversarial Sample Generation

    Daniyal M. Alghazzawi1, Syed Hamid Hasan1,*, Surbhi Bhatia2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3877-3897, 2022, DOI:10.32604/cmc.2022.024613 - 29 March 2022

    Abstract Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times. Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic. We are using Deep Convolutional Generative Adversarial Networks (DCGAN) to trick the malware classifier to believe it is a normal entity. In this work, a new dataset is created to fool the Artificial Intelligence (AI) based malware detectors, and it consists of different types of attacks such as Denial of Service (DoS), scan 11, scan 44, botnet,… More >

  • Open Access

    ARTICLE

    An Efficient Internet Traffic Classification System Using Deep Learning for IoT

    Muhammad Basit Umair1, Zeshan Iqbal1, Muhammad Bilal2, Jamel Nebhen4, Tarik Adnan Almohamad3, Raja Majid Mehmood5,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 407-422, 2022, DOI:10.32604/cmc.2022.020727 - 03 November 2021

    Abstract Internet of Things (IoT) defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location. These IoT devices are connected to a network therefore prone to attacks. Various management tasks and network operations such as security, intrusion detection, Quality-of-Service provisioning, performance monitoring, resource provisioning, and traffic engineering require traffic classification. Due to the ineffectiveness of traditional classification schemes, such as port-based and payload-based methods, researchers proposed machine learning-based traffic classification systems based on shallow neural networks. Furthermore, machine learning-based models incline to misclassify… More >

  • Open Access

    ARTICLE

    Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier

    M. Govindarajan1,*, V. Chandrasekaran2, S. Anitha3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 851-863, 2022, DOI:10.32604/csse.2022.019298 - 24 September 2021

    Abstract Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time. With the use of mobile devices, communication services generate numerous data for every moment. Given the increasing dense population of data, traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation. A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning (RKLSTM-CTMDSL) model is introduced for traffic prediction with superior accuracy and minimal time consumption. The RKLSTM-CTMDSL model performs attribute selection and classification processes… More >

Displaying 11-20 on page 2 of 24. Per Page