Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,603)
  • Open Access

    ARTICLE

    Cat-Inspired Deep Convolutional Neural Network for Bone Marrow Cancer Cells Detection

    R. Kavitha1,*, N. Viswanathan2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1305-1320, 2022, DOI:10.32604/iasc.2022.022816 - 08 February 2022

    Abstract Bone marrow cancer is considered to be the most complex and dangerous disease which results due to an uncontrolled growth of white blood cells called leukocytes. Acute Lymphoblastic Leukemia (ALL) and Multiple Myeloma (MM) are considered to be important categories of bone cancers, which induces a larger number of cancer cells in the bone marrow, results in preventing the production of healthy blood cells. The advent of Artificial Intelligence, especially machine and deep learning, has expanded humanity’s capacity to analyze and detect these increasingly complex diseases. But, accurate detection of cancer cells and reducing the… More >

  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning Algorithms for Classifying Hand Motion-Based EEG Brain Signals

    Ayman Altameem1, Jaideep Singh Sachdev2, Vijander Singh2, Ramesh Chandra Poonia3, Sandeep Kumar4, Abdul Khader Jilani Saudagar5,*

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1095-1107, 2022, DOI:10.32604/csse.2022.023256 - 08 February 2022

    Abstract Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals; these signals can be recorded, processed and classified into different hand movements, which can be used to control other IoT devices. Classification of hand movements will be one step closer to applying these algorithms in real-life situations using EEG headsets. This paper uses different feature extraction techniques and sophisticated machine learning algorithms to classify hand movements from EEG brain signals to control prosthetic hands for amputated persons. To achieve good classification accuracy, denoising and feature extraction of EEG signals… More >

  • Open Access

    ARTICLE

    Automatic Real-Time Medical Mask Detection Using Deep Learning to Fight COVID-19

    Mohammad Khalid Imam Rahmani1, Fahmina Taranum2, Reshma Nikhat3, Md. Rashid Farooqi3, Mohammed Arshad Khan4,*

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1181-1198, 2022, DOI:10.32604/csse.2022.022014 - 08 February 2022

    Abstract The COVID-19 pandemic is a virus that has disastrous effects on human lives globally; still spreading like wildfire causing huge losses to humanity and economies. There is a need to follow few constraints like social distancing norms, personal hygiene, and masking up to effectively control the virus spread. The proposal is to detect the face frame and confirm the faces are properly covered with masks. By applying the concepts of Deep learning, the results obtained for mask detection are found to be effective. The system is trained using 4500 images to accurately judge and justify… More >

  • Open Access

    ARTICLE

    Deep Learning Convolutional Neural Network for ECG Signal Classification Aggregated Using IoT

    S. Karthiga*, A. M. Abirami

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 851-866, 2022, DOI:10.32604/csse.2022.021935 - 08 February 2022

    Abstract Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, network connectivity is facilitated between smart devices from anyplace and anytime. IoT-based health monitoring systems are gaining popularity and acceptance for continuous monitoring and detect health abnormalities from the data collected. Electrocardiographic (ECG) signals are widely used for heart diseases detection. A novel method has been proposed in this work for ECG monitoring using IoT techniques. In this work, a two-stage approach is employed.… More >

  • Open Access

    ARTICLE

    Improving Date Fruit Classification Using CycleGAN-Generated Dataset

    Dina M. Ibrahim1,2,*, Nada M. Elshennawy2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 331-348, 2022, DOI:10.32604/cmes.2022.016419 - 24 January 2022

    Abstract Dates are an important part of human nutrition. Dates are high in essential nutrients and provide a number of health benefits. Date fruits are also known to protect against a number of diseases, including cancer and heart disease. Date fruits have several sizes, colors, tastes, and values. There are a lot of challenges facing the date producers. One of the most significant challenges is the classification and sorting of dates. But there is no public dataset for date fruits, which is a major limitation in order to improve the performance of convolutional neural networks (CNN)… More >

  • Open Access

    ARTICLE

    LF-CNN: Deep Learning-Guided Small Sample Target Detection for Remote Sensing Classification

    Chengfan Li1,2, Lan Liu3,*, Junjuan Zhao1, Xuefeng Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 429-444, 2022, DOI:10.32604/cmes.2022.019202 - 24 January 2022

    Abstract Target detection of small samples with a complex background is always difficult in the classification of remote sensing images. We propose a new small sample target detection method combining local features and a convolutional neural network (LF-CNN) with the aim of detecting small numbers of unevenly distributed ground object targets in remote sensing images. The k-nearest neighbor method is used to construct the local neighborhood of each point and the local neighborhoods of the features are extracted one by one from the convolution layer. All the local features are aggregated by maximum pooling to obtain global… More >

  • Open Access

    ARTICLE

    Visualization Detection of Solid–Liquid Two-Phase Flow in Filling Pipeline by Electrical Capacitance Tomography Technology

    Ningbo Jing1, Mingqiao Li1, Lang Liu2,*, Yutong Shen1, Peijiao Yang1, Xuebin Qin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 465-476, 2022, DOI:10.32604/cmes.2022.018965 - 24 January 2022

    Abstract During mine filling, the caking in the pipeline and the waste rock in the filling slurry may cause serious safety accidents such as pipe blocking or explosion. Therefore, the visualization of the inner mine filling of the solid–liquid two-phase flow in the pipeline is important. This paper proposes a method based on capacitance tomography for the visualization of the solid–liquid distribution on the section of a filling pipe. A feedback network is used for electrical capacitance tomography reconstruction. This reconstruction method uses radial basis function neural network fitting to determine the relationship between the capacitance… More >

  • Open Access

    ARTICLE

    A Novel Feature Aggregation Approach for Image Retrieval Using Local and Global Features

    Yuhua Li1, Zhiqiang He1,2, Junxia Ma1,*, Zhifeng Zhang1,*, Wangwei Zhang1, Prasenjit Chatterjee3, Dragan Pamucar4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 239-262, 2022, DOI:10.32604/cmes.2022.016287 - 24 January 2022

    Abstract The current deep convolution features based on retrieval methods cannot fully use the characteristics of the salient image regions. Also, they cannot effectively suppress the background noises, so it is a challenging task to retrieve objects in cluttered scenarios. To solve the problem, we propose a new image retrieval method that employs a novel feature aggregation approach with an attention mechanism and utilizes a combination of local and global features. The method first extracts global and local features of the input image and then selects keypoints from local features by using the attention mechanism. After… More >

  • Open Access

    ARTICLE

    Human Faces Detection and Tracking for Crowd Management in Hajj and Umrah

    Riad Alharbey1, Ameen Banjar1, Yahia Said2,3,*, Mohamed Atri4, Abdulrahman Alshdadi1, Mohamed Abid5

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6275-6291, 2022, DOI:10.32604/cmc.2022.024272 - 14 January 2022

    Abstract Hajj and Umrah are two main religious duties for Muslims. To help faithfuls to perform their religious duties comfortably in overcrowded areas, a crowd management system is a must to control the entering and exiting for each place. Since the number of people is very high, an intelligent crowd management system can be developed to reduce human effort and accelerate the management process. In this work, we propose a crowd management process based on detecting, tracking, and counting human faces using Artificial Intelligence techniques. Human detection and counting will be performed to calculate the number… More >

  • Open Access

    ARTICLE

    Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition

    Reya Sharma1, Baijnath Kaushik1, Naveen Kumar Gondhi1, Muhammad Tahir2,*, Mohammad Khalid Imam Rahmani2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5855-5873, 2022, DOI:10.32604/cmc.2022.024232 - 14 January 2022

    Abstract Even though several advances have been made in recent years, handwritten script recognition is still a challenging task in the pattern recognition domain. This field has gained much interest lately due to its diverse application potentials. Nowadays, different methods are available for automatic script recognition. Among most of the reported script recognition techniques, deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms. However, the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error, which renders them unfeasible. This approach often More >

Displaying 1061-1070 on page 107 of 1603. Per Page