Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Hybrid Pythagorean Fuzzy Decision-Making Framework for Sustainable Urban Planning under Uncertainty

    Sana Shahab1, Vladimir Simic2,*, Ashit Kumar Dutta3,4, Mohd Anjum5,*, Dragan Pamucar6,7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073945 - 29 January 2026

    Abstract Environmental problems are intensifying due to the rapid growth of the population, industry, and urban infrastructure. This expansion has resulted in increased air and water pollution, intensified urban heat island effects, and greater runoff from parks and other green spaces. Addressing these challenges requires prioritizing green infrastructure and other sustainable urban development strategies. This study introduces a novel Integrated Decision Support System that combines Pythagorean Fuzzy Sets with the Advanced Alternative Ranking Order Method allowing for Two-Step Normalization (AAROM-TN), enhanced by a dual weighting strategy. The weighting approach integrates the Criteria Importance Through Intercriteria Correlation… More >

  • Open Access

    ARTICLE

    Modeling Pruning as a Phase Transition: A Thermodynamic Analysis of Neural Activations

    Rayeesa Mehmood*, Sergei Koltcov, Anton Surkov, Vera Ignatenko

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072735 - 12 January 2026

    Abstract Activation pruning reduces neural network complexity by eliminating low-importance neuron activations, yet identifying the critical pruning threshold—beyond which accuracy rapidly deteriorates—remains computationally expensive and typically requires exhaustive search. We introduce a thermodynamics-inspired framework that treats activation distributions as energy-filtered physical systems and employs the free energy of activations as a principled evaluation metric. Phase-transition–like phenomena in the free-energy profile—such as extrema, inflection points, and curvature changes—yield reliable estimates of the critical pruning threshold, providing a theoretically grounded means of predicting sharp accuracy degradation. To further enhance efficiency, we propose a renormalized free energy technique that More >

  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    ARTICLE

    Switchable Normalization Based Faster RCNN for MRI Brain Tumor Segmentation

    Rachana Poongodan1, Dayanand Lal Narayan2, Deepika Gadakatte Lokeshwarappa3, Hirald Dwaraka Praveena4, Dae-Ki Kang5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5751-5772, 2025, DOI:10.32604/cmc.2025.066314 - 30 July 2025

    Abstract In recent decades, brain tumors have emerged as a serious neurological disorder that often leads to death. Hence, Brain Tumor Segmentation (BTS) is significant to enable the visualization, classification, and delineation of tumor regions in Magnetic Resonance Imaging (MRI). However, BTS remains a challenging task because of noise, non-uniform object texture, diverse image content and clustered objects. To address these challenges, a novel model is implemented in this research. The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN, which effectively captures the… More >

  • Open Access

    ARTICLE

    Low-Complexity Hardware Architecture for Batch Normalization of CNN Training Accelerator

    Go-Eun Woo, Sang-Bo Park, Gi-Tae Park, Muhammad Junaid, Hyung-Won Kim*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3241-3257, 2025, DOI:10.32604/cmc.2025.063723 - 03 July 2025

    Abstract On-device Artificial Intelligence (AI) accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field, where frequent retraining is crucial due to frequent production changes. Batch normalization (BN) is fundamental to training convolutional neural networks (CNNs), but its implementation in compact accelerator chips remains challenging due to computational complexity, particularly in calculating statistical parameters and gradients across mini-batches. Existing accelerator architectures either compromise the training accuracy of CNNs through approximations or require substantial computational resources, limiting their practical deployment. We present a hardware-optimized BN accelerator… More >

  • Open Access

    ARTICLE

    Side-Scan Sonar Image Detection of Shipwrecks Based on CSC-YOLO Algorithm

    Shengxi Jiao1, Fenghao Xu1, Haitao Guo2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3019-3044, 2025, DOI:10.32604/cmc.2024.057192 - 17 February 2025

    Abstract Underwater shipwreck identification technology, as a crucial technique in the field of marine surveying, plays a significant role in areas such as the search and rescue of maritime disaster shipwrecks. When facing the task of object detection in shipwreck side-scan sonar images, due to the complex seabed environment, it is difficult to extract object features, often leading to missed detections of shipwreck images and slow detection speed. To address these issues, this paper proposes an object detection algorithm, CSC-YOLO (Context Guided Block, Shared Conv_Group Normalization Detection, Cross Stage Partial with 2 Partial Convolution-You Only Look… More >

  • Open Access

    ARTICLE

    A Novel Optimized Deep Convolutional Neural Network for Efficient Seizure Stage Classification

    Umapathi Krishnamoorthy1,*, Shanmugam Jagan2, Mohammed Zakariah3, Abdulaziz S. Almazyad4,*, K. Gurunathan5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3903-3926, 2024, DOI:10.32604/cmc.2024.055910 - 19 December 2024

    Abstract Brain signal analysis from electroencephalogram (EEG) recordings is the gold standard for diagnosing various neural disorders especially epileptic seizure. Seizure signals are highly chaotic compared to normal brain signals and thus can be identified from EEG recordings. In the current seizure detection and classification landscape, most models primarily focus on binary classification—distinguishing between seizure and non-seizure states. While effective for basic detection, these models fail to address the nuanced stages of seizures and the intervals between them. Accurate identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure… More >

  • Open Access

    ARTICLE

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

    Samar M. Alqhtani1, Toufique A. Soomro2,*, Faisal Bin Ubaid3, Ahmed Ali4, Muhammad Irfan5, Abdullah A. Asiri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1539-1562, 2024, DOI:10.32604/cmes.2024.051475 - 20 May 2024

    Abstract Cancer-related to the nervous system and brain tumors is a leading cause of mortality in various countries. Magnetic resonance imaging (MRI) and computed tomography (CT) are utilized to capture brain images. MRI plays a crucial role in the diagnosis of brain tumors and the examination of other brain disorders. Typically, manual assessment of MRI images by radiologists or experts is performed to identify brain tumors and abnormalities in the early stages for timely intervention. However, early diagnosis of brain tumors is intricate, necessitating the use of computerized methods. This research introduces an innovative approach for… More > Graphic Abstract

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

  • Open Access

    ARTICLE

    A Deep Learning Framework for Mass-Forming Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma Classification Based on Magnetic Resonance Imaging

    Luda Chen1, Kuangzhu Bao2, Ying Chen2, Jingang Hao2,*, Jianfeng He1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 409-427, 2024, DOI:10.32604/cmc.2024.048507 - 25 April 2024

    Abstract Pancreatic diseases, including mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma (PDAC), present with similar imaging features, leading to diagnostic complexities. Deep Learning (DL) methods have been shown to perform well on diagnostic tasks. Existing DL pancreatic lesion diagnosis studies based on Magnetic Resonance Imaging (MRI) utilize the prior information to guide models to focus on the lesion region. However, over-reliance on prior information may ignore the background information that is helpful for diagnosis. This study verifies the diagnostic significance of the background information using a clinical dataset. Consequently, the Prior Difference Guidance Network (PDGNet)… More >

  • Open Access

    ARTICLE

    Nuclei Segmentation in Histopathology Images Using Structure-Preserving Color Normalization Based Ensemble Deep Learning Frameworks

    Manas Ranjan Prusty1, Rishi Dinesh2, Hariket Sukesh Kumar Sheth2, Alapati Lakshmi Viswanath2, Sandeep Kumar Satapathy2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3077-3094, 2023, DOI:10.32604/cmc.2023.042718 - 26 December 2023

    Abstract This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin (H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks (CNN) architectures as encoder backbones, along with stain normalization and test time… More >

Displaying 1-10 on page 1 of 41. Per Page