Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Ext-ICAS: A Novel Self-Normalized Extractive Intra Cosine Attention Similarity Summarization

    P. Sharmila1,*, C. Deisy1, S. Parthasarathy2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 377-393, 2023, DOI:10.32604/csse.2023.027481 - 16 August 2022

    Abstract With the continuous growth of online news articles, there arises the necessity for an efficient abstractive summarization technique for the problem of information overloading. Abstractive summarization is highly complex and requires a deeper understanding and proper reasoning to come up with its own summary outline. Abstractive summarization task is framed as seq2seq modeling. Existing seq2seq methods perform better on short sequences; however, for long sequences, the performance degrades due to high computation and hence a two-phase self-normalized deep neural document summarization model consisting of improvised extractive cosine normalization and seq2seq abstractive phases has been proposed… More >

  • Open Access

    ARTICLE

    Enhanced Attention-Based Encoder-Decoder Framework for Text Recognition

    S. Prabu, K. Joseph Abraham Sundar*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2071-2086, 2023, DOI:10.32604/iasc.2023.029105 - 19 July 2022

    Abstract Recognizing irregular text in natural images is a challenging task in computer vision. The existing approaches still face difficulties in recognizing irregular text because of its diverse shapes. In this paper, we propose a simple yet powerful irregular text recognition framework based on an encoder-decoder architecture. The proposed framework is divided into four main modules. Firstly, in the image transformation module, a Thin Plate Spline (TPS) transformation is employed to transform the irregular text image into a readable text image. Secondly, we propose a novel Spatial Attention Module (SAM) to compel the model to concentrate… More >

  • Open Access

    ARTICLE

    Covid-19 Forecasting with Deep Learning-based Half-binomial Distribution Cat Swarm Optimization

    P. Renukadevi1,*, A. Rajiv Kannan2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 629-645, 2023, DOI:10.32604/csse.2023.024217 - 01 June 2022

    Abstract About 170 nations have been affected by the COvid VIrus Disease-19 (COVID-19) epidemic. On governing bodies across the globe, a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive, and they feel challenging to tackle this situation. Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations. In the previous works, Long Short-Term Memory (LSTM) was used to predict future COVID-19 cases. According to LSTM network data, the outbreak is expected to finish by June 2020. However, there is a chance… More >

  • Open Access

    ARTICLE

    A Cross Language Code Security Audit Framework Based on Normalized Representation

    Yong Chen1,*, Chao Xu1, Jing Selena He2, Sheng Xiao3

    Journal of Quantum Computing, Vol.4, No.2, pp. 75-84, 2022, DOI:10.32604/jqc.2022.031312 - 16 May 2023

    Abstract With the rapid development of information technology, audit objects and audit itself are more and more inseparable from software. As an important means of software security audit, code security audit will become an important aspect of future audit that cannot be ignored. However, the existing code security audit is mainly based on source code, which is difficult to meet the audit needs of more and more programming languages and binary commercial software. Based on the idea of normalized transformation, this paper constructs a cross language code security audit framework (CLCSA). CLCSA first uses compile/decompile technology… More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization

    Sihua Wang1,2, Wenhui Zhang1,2,*, Gaofei Zheng1,2, Xujie Li1,2, Yougeng Zhao1,2

    Energy Engineering, Vol.119, No.6, pp. 2431-2445, 2022, DOI:10.32604/ee.2022.020779 - 14 September 2022

    Abstract In order to improve the condition monitoring and fault diagnosis of wind turbines, a stacked noise reduction autoencoding network based on group normalization is proposed in this paper. The network is based on SCADA data of wind turbine operation, firstly, the group normalization (GN) algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed, and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder, which further optimizes the problem that the loss function swings too much during the update process. Finally, More >

  • Open Access

    ARTICLE

    Optimal IoT Based Improved Deep Learning Model for Medical Image Classification

    Prasanalakshmi Balaji1,*, B. Sri Revathi2, Praveetha Gobinathan3, Shermin Shamsudheen3, Thavavel Vaiyapuri4

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2275-2291, 2022, DOI:10.32604/cmc.2022.028560 - 16 June 2022

    Abstract Recently medical image classification plays a vital role in medical image retrieval and computer-aided diagnosis system. Despite deep learning has proved to be superior to previous approaches that depend on handcrafted features; it remains difficult to implement because of the high intra-class variance and inter-class similarity generated by the wide range of imaging modalities and clinical diseases. The Internet of Things (IoT) in healthcare systems is quickly becoming a viable alternative for delivering high-quality medical treatment in today’s e-healthcare systems. In recent years, the Internet of Things (IoT) has been identified as one of the… More >

  • Open Access

    ARTICLE

    An Optimized Convolutional Neural Network with Combination Blocks for Chinese Sign Language Identification

    Yalan Gao, Yanqiong Zhang, Xianwei Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 95-117, 2022, DOI:10.32604/cmes.2022.019970 - 02 June 2022

    Abstract (Aim) Chinese sign language is an essential tool for hearing-impaired to live, learn and communicate in deaf communities. Moreover, Chinese sign language plays a significant role in speech therapy and rehabilitation. Chinese sign language identification can provide convenience for those hearing impaired people and eliminate the communication barrier between the deaf community and the rest of society. Similar to the research of many biomedical image processing (such as automatic chest radiograph processing, diagnosis of chest radiological images, etc.), with the rapid development of artificial intelligence, especially deep learning technologies and algorithms, sign language image recognition ushered… More >

  • Open Access

    ARTICLE

    Identification of Suitable Reference Genes for qRT-PCR Normalization in Tilia miqueliana Maxim

    Huanli Wang, Lingjun Yan, Xi Huang, Zhongwei Wang, Yuanhao Yue, Shijie Tang*

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2191-2210, 2022, DOI:10.32604/phyton.2022.020735 - 30 May 2022

    Abstract Quantitative real-time polymerase chain reaction (qRT-PCR) is a rapid and effective approach toward detecting the expression patterns of target genes. The selection of a stable reference gene under specific test condition is essential for expressing levels of target genes accurately. Tilia miqueliana, considered endangered, is a prominent native ornamental and honey tree in East China. No study has evaluated the optimal endogenous reference gene for qRT-PCR analysis in T. miqueliana systematically. In this study, fifteen commonly used reference genes were selected as candidate genes, and the stabilities of their expressions were assessed using four algorithms (GeNorm, NormFiner,… More >

  • Open Access

    ARTICLE

    An Enhanced Deep Learning Method for Skin Cancer Detection and Classification

    Mohamed W. Abo El-Soud1,2,*, Tarek Gaber2,3, Mohamed Tahoun2, Abdullah Alourani1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1109-1123, 2022, DOI:10.32604/cmc.2022.028561 - 18 May 2022

    Abstract The prevalence of melanoma skin cancer has increased in recent decades. The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins. Thus, the early diagnosis of melanoma is a key factor in improving the prognosis of the disease. Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images. Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases. This paper proposes a new method… More >

  • Open Access

    ARTICLE

    An Evolutionary Normalization Algorithm for Signed Floating-Point Multiply-Accumulate Operation

    Rajkumar Sarma1, Cherry Bhargava2, Ketan Kotecha3,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 481-495, 2022, DOI:10.32604/cmc.2022.024516 - 24 February 2022

    Abstract In the era of digital signal processing, like graphics and computation systems, multiplication-accumulation is one of the prime operations. A MAC unit is a vital component of a digital system, like different Fast Fourier Transform (FFT) algorithms, convolution, image processing algorithms, etcetera. In the domain of digital signal processing, the use of normalization architecture is very vast. The main objective of using normalization is to perform comparison and shift operations. In this research paper, an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer, Adder etc. The… More >

Displaying 11-20 on page 2 of 37. Per Page