Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (377)
  • Open Access

    ABSTRACT

    Direct Numerical Simulations for Colloidal Dispersions

    Ryoichi Yamamoto

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 37-38, 2011, DOI:10.3970/icces.2011.018.037

    Abstract We developed a unique method for direct numerical simulations (DNS) of dense colloidal dispersions [3, 5]. This method, called the smoothed profile method (SPM), enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier-Stokes equations so that the electro- hydrodynamic couplings can be fully taken into account. We have applied the SPM successfully for simulating dynamics of various particle dispersions, including colloids in liquid crystals [1, 2], electrophoresis of charged colloids [4, 5], particle diffusion in fluids [7, 8], dispersion rheology [9, 11], tumbling chain in shear flow [10],… More >

  • Open Access

    ABSTRACT

    Numerical Simulation of Fluid-Structure Interaction of LNG Prestressed Storage Tank under Seismic Influence

    X.H. Du, X.P. Shen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 81-82, 2011, DOI:10.3970/icces.2011.016.081

    Abstract Aim of this paper is to simulate the fluid-structure interaction of liquefied natural gas (LNG) prestressed storage tank under seismic influence. The coupled Eulerian-Lagrangian (CEL) analysis technique is used to simulate the hydrodynamic interaction between LNG and the cylinder of LNG prestressed storage tank. The 3-D model of LNG has been dispersed by Eulerian mesh which is different from traditional added mass analysis method. Meanwhile, both of the 3-D models of prestressed rebar and concrete structure are dispersed by Lagrangian mesh. Following conclusions are obtained: 1) Natural frequency of the whole model has been obtained by using the Block Lanczos… More >

  • Open Access

    ABSTRACT

    Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites

    Alamusi, Yaolu Liu, Ning Hu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 57-58, 2011, DOI:10.3970/icces.2011.016.057

    Abstract In this work, we propose a 3 dimensional (3D) numerical model to predict the piezoresistivity behaviours of a nanocomposite material made from an insulating polymer filled by carbon nanotubes (CNTs). This material is very hopeful for its application in highly sensitive strain sensor by measuring its piezoresistivity, i.e., the ratio of resistance change versus applied strain. In this numerical approach, a 3D resistor network model is firstly proposed to predict the electrical conductivity of the nanocomposite with a large amount of randomly dispersed CNTs under the zero strain state. By focusing on the fact that the piezoresistivity of the nanocomposite… More >

  • Open Access

    ABSTRACT

    Micro-Scale Numerical Simulation of Water Migration in Plant-Based Materials During Isothermal Drying

    Peng Wang, Huaxing Zhai, Gehan Liu, Xiaohua Wu, Dongliang Sun* and Bo Yu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 149-150, 2019, DOI:10.32604/icces.2019.04963

    Abstract The isothermal drying of plant-based material, such as fruits and vegetables, is the most widely used drying technique to stabilize materiel and to increase their shelf life. However, drying is a high energy-consuming industry process, in which water removal obviously affects the quality of dried products. Therefore, it is crucial to understand the water migration mechanisms during drying for improving energy efficiency and ensuring better quality.
    Plant-based material generally has highly porous characteristics, and the major part of the water (about 80-90%) is present in the intracellular space, but not in the intercellular (pore) space. There are three pathways… More >

  • Open Access

    ABSTRACT

    A POD Coupled Adaptive DEIM (POD-ADEIM) Reduced-Order Model for Incompressible Multiphase Flow in Porous Media

    Jingfa Li1,2, Shuyu Sun2,*, Bo Yu1, Yang Liu2, Tao Zhang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 141-142, 2019, DOI:10.32604/icces.2019.04721

    Abstract The multiphase fluid flow in porous media is one of the most fundamental phenomena in various physical processes, such as oil/gas flow in reservoir, subsurface contamination dispersion, chemical separation, etc. Due to its importance, the efficient and accurate solution and prediction of multiphase flow in porous media is highly required in engineering applications and mechanism studies, which has been a research hot spot with increasing interest in recent years. However, the strong nonlinearity implicated in the multiphase flow model has brought great challenges for the computation and analysis. In addition, the permeability in Darcy-type pressure equation is always represented as… More >

  • Open Access

    ABSTRACT

    Numerical Simulation on Dynamics and Heat Transfer Characteristics of Granulated Molten Slag Particle by Air with Moisture

    Yiming Fan1,2, Jingfu Wang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 167-167, 2019, DOI:10.32604/icces.2019.05590

    Abstract In order to investigate the dynamics and heat transfer characteristics of granulated molten blast furnace slag by blast air, a mathematical model for the dynamics and heat transfer of high temperature molten slag granulated by gas was established and solved through the fourth order Runge-Kutta algorithm, the calculation program was compiled by FORTRAN. Considering that the efficiency of air cooling is low, a method of spray cooling was presented to improve the cooling rate. And the effect of varied particle size on movement and cooling was also researched. The variation of main thermal physical properties of slag and air with… More >

  • Open Access

    ABSTRACT

    Numerical Investigation of Heat Transfer to Supercritical Pressure Water in Vertical Tube With Non-Uniform Heating Form

    Zhenchuan Wang1,2, Ruina Xu2, Peixue Jiang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 154-154, 2019, DOI:10.32604/icces.2019.05023

    Abstract Deeply analysis and prediction of turbulent convection heat transfer of supercritical pressure fluid in one-side non-uniform heating vertical tube plays a major role in system design and security. The Over-prediction of convection heat transfer of supercritical pressure fluid in vertical tube is attributed, at least partly, to the invalid of turbulent model on simulating the buoyancy effect. The present paper adopt an improved turbulent model, which is validated suitable to three dimensional model, to simulate flow and heat transfer of supercritical pressure water in vertical non-uniform heating tube. Heat transfer deterioration phenomenon occurs in non-uniform heating condition, while the degree… More >

  • Open Access

    ABSTRACT

    Numerical Simulation on the Influence of the Properties of Continuous Phase on Fluid Flow and Temperature Response in a Laser-Heated Suspended Droplet

    Long Jiao1,2, Zhibin Wang1,2, Rong Chen1,2,*, Xun Zhu1,2, Qiang Liao1,2, Dingding Ye1,2, Biao Zhang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 144-146, 2019, DOI:10.32604/icces.2019.04734

    Abstract With the advances in micro total analysis systems (µTAS), the droplet-based microfluidics, which manipulates mini discrete droplets in an immiscible continuous phase to accomplish various detections, has been applied to many fields including medicine, pharmacy, fine-chemistry and biotechnology as it offers distinct advantages, such as small diffusion length, high-throughput, precise control and integratability [1]. As compared to the continuous-flow microfluidics, the samples in the droplet-based microfluidics are isolated by a defined droplet/continuous phase interface, avoiding the cross contamination and resulting in a controllable reaction environment. In the droplet-based microfluidics, the control of the droplet temperature with prominent temporal spatial resolution… More >

  • Open Access

    ABSTRACT

    Theoretical Analysis and Numerical Simulation of Multi-Fields Coupled Variation During Deepwater Hydrate-Bearing Reservoir Exploitation

    Ye Chen, Yonghai Gao, Guizhen Xin, Wang Yao, Dongzhi Gao, Litao Chen, Baojiang Sun*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 88-89, 2019, DOI:10.32604/icces.2019.05522

    Abstract Natural gas hydrate is regarded as a kind of potential alternative energy resource and attracts the attention all over the world. Geological surveys have found that most natural gas hydrates are buried at the bottom of the sea. Several development methods, such as depressurization, thermal stimulation and inhibitor injection are proposed gradually on the basis of hydrate special properties, obtaining certain trial-produce performance. It is of great significance to learn the flow rules underground for production safety guarantee and efficiency improvement. However, the special phase transition of hydrate between solid and fluid accompanied by energy and mass change makes it… More >

  • Open Access

    ABSTRACT

    Numerical simulation of fire and smoke transport for an old-style apartment fire

    C.S. Lin, T.C. Chen, C.C. Yu ,M.E. Wu, Y.H. Tu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 103-110, 2010, DOI:10.3970/icces.2010.015.103

    Abstract Most old apartments in Taiwan lack fire prevention equipment, making fire awareness and escape difficult, as well as timely fire fighting, which leads to increased death tolls from fire incidents. This research utilizes Fire Dynamics Simulator (FDS) software to analyze and simulate the fire accident that occurred in a single old-style five-story apartment on Siu-Lang Road, Chung-Ho City. In this event, many occupant vehicles were parked at the front door of the apartment building or in nearby parking lanes. The fire engine can only drive in after vehicles were cleared from the fire area, a situation that delayed emergency fire… More >

Displaying 261-270 on page 27 of 377. Per Page