Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    Numerical Study of Computer Virus Reaction Diffusion Epidemic Model

    Umbreen Fatima1, Dumitru Baleanu2,3,4, Nauman Ahmed5,8, Shumaila Azam5, Ali Raza6,*, Muhammad Rafiq7, Muhammad Aziz-ur Rehman8

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3183-3194, 2021, DOI:10.32604/cmc.2021.012666

    Abstract Reaction–diffusion systems are mathematical models which link to several physical phenomena. The most common is the change in space and time of the meditation of one or more materials. Reaction–diffusion modeling is a substantial role in the modeling of computer propagation like infectious diseases. We investigated the transmission dynamics of the computer virus in which connected to each other through network globally. The current study devoted to the structure-preserving analysis of the computer propagation model. This manuscript is devoted to finding the numerical investigation of the reaction–diffusion computer virus epidemic model with the help of a reliable technique. The designed… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study on Anchorage Strength and Deformation Properties of Blocky Rock Mass

    Junfu Zhu1, Qian Yin1,2,*, Hongwen Jing1, Xinshuai Shi1, Minliang Chen1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 725-753, 2020, DOI:10.32604/cmes.2020.012648

    Abstract This study experimentally and numerically investigated the anchorage properties, bolt force evolution, deformation and stress fields of blocky rock mass with various dip angles of joint surfaces under an applied axial load. The results show that due to bolt reinforcement, the axial stress-strain curves of anchorage blocky rock mass show typical strain-hardening characteristics, and compared with models without anchorage, the peak strength and elastic modulus increase by 21.56% and 20.0%, respectively. With an increase in axial stress, the lateral strain continuously increases, and restriction effects of bolts reduce the overall deformation of model surfaces. The axial stressstrain curves of anchorage… More >

  • Open Access

    ARTICLE

    A Combined Experimental and Numerical Study of Shotcrete Jets and Related Wet Spray Nozzles

    Chang Su1,2, Qiangqiang Zheng3,*, Wukun Zhao4

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 947-960, 2020, DOI:10.32604/fdmp.2020.09676

    Abstract In this research, the dynamics of wet spray nozzles with different geometries, used to accelerate shotcrete, are investigated on the basis of a suitable three-dimensional mathematical model and related numerical method. Simulations have been conducted in the frame of the SIMPLEC algorithm. The k-ε turbulence model has been used to account for turbulent effects. The study shows that when the angle of the convergent section is less than 3°, it has a scarce effect on the dynamics of the jet of shotcrete; with the increase of the convergence angle, the shotcrete jet velocity decreases and the nozzle wear increases; when… More >

  • Open Access

    ARTICLE

    A Numerical Study of the Tip Wake of a Wind Turbine Impeller Using Extended Proper Orthogonal Decomposition

    Weimin Wu, Chuande Zhou*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 883-901, 2020, DOI:10.32604/fdmp.2020.010407

    Abstract The behavior of the tip wake of a wind turbine is one of the hot issues in the wind power field. This problem can partially be tackled using Computational Fluid Dynamics (CFD). However, this approach lacks the ability to provide insights into the spatial structure of important high-order flows. Therefore, with the horizontal axis wind turbine as the main focus, in this work, firstly, we conduct CFD simulations of the wind turbine in order to obtain a data-driven basis relating to multiple working conditions for further analysis. Then, these data are studied using an extended Proper Orthogonal Decomposition (POD) algorithm.… More >

  • Open Access

    ARTICLE

    Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus

    Dumitru Baleanu1,2, Behzad Ghanbari3, Jihad H. Asad4,*, Amin Jajarmi5, Hassan Mohammadi Pirouz5

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 953-968, 2020, DOI:10.32604/cmes.2020.010236

    Abstract In this work, a system of three masses on the vertices of equilateral triangle is investigated. This system is known in the literature as a planar system. We first give a description to the system by constructing its classical Lagrangian. Secondly, the classical Euler-Lagrange equations (i.e., the classical equations of motion) are derived. Thirdly, we fractionalize the classical Lagrangian of the system, and as a result, we obtain the fractional Euler-Lagrange equations. As the final step, we give the numerical simulations of the fractional model, a new model which is based on Caputo fractional derivative. More >

  • Open Access

    ARTICLE

    Numerical Study on the Gas Leakage and Dispersion at the Street Intersection of a Building Group

    Weitao Zhang1, 2, Mengqi Liu3, Kaiyi Wang4, Fan Zhang2, Lei Hou1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1247-1266, 2020, DOI:10.32604/cmes.2020.09297

    Abstract Accidents involving natural gas leakage and dispersion pose a significant threat to human life and property. This threat is especially relevant at the street intersection at which dense buildings, heavy traffic flow, and complex underground pipe networks meet. Scholars have conducted numerous studies on gas leakage and dispersion, but investigations of natural gas leakage and dispersion at the street intersection of a building group are not in-depth. In this paper, we presented a three-dimensional (3D) physical model based on the Computational Fluid Dynamic (CFD) methodology to study the natural gas leakage and dispersion at the street intersection of a building… More >

  • Open Access

    ARTICLE

    Safety Performance of a Precast Concrete Barrier: Numerical Study

    Zishen Li1, Xiangling Gao1, *, Zicheng Tang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1105-1129, 2020, DOI:10.32604/cmes.2020.09047

    Abstract The numerical simulation for a new type of precast concrete barrier for viaducts is carried out systematically. To obtain an accurate representation of the damage state of the concrete barrier under the impact of a vehicle, a stochastic damage-plasticity model of the concrete is adopted in the finite element model. Meanwhile, a simplified mathematical model of the impact between vehicles and the concrete barrier was established and the input energy was converted to the impact load to facilitate the investigation of the safety performance of the concrete barriers. On this basis, a refined finite element (FE) model of a precast… More >

  • Open Access

    ARTICLE

    Numerical Study of High-Temperature Nonequilibrium Flow around Reentry Vehicle Coupled with Thermal Radiation

    Jingying Wang, Fangzhou Han*, Li Lei, Chunhian Lee

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 601-613, 2020, DOI:10.32604/fdmp.2020.09624

    Abstract Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions. The temperature in the shock layer surrounding the reentry vehicle can reach up to 10,000 K and result in remarkable thermochemical nonequilibrium, as well as considerable radiative heat transfer. In general, high-temperature flow simulations coupled with thermal radiation require appropriate numerical schemes and physical models. In this paper, the equations governing hypersonic nonequilibrium flow, based on a three-temperature model combined with a thermal radiation solving approach, are used to investigate the radiation effects in the reentry shock layer. An axisymmetric spherical case… More >

  • Open Access

    ARTICLE

    Numerical Study of the Distribution of Temperatures and Relative Humidity in a Ventilated Room Located in Warm Weather

    J. Serrano-Arellano1, J. M. Belman-Flores2,*, I. Hernández-Pérez3, K. M. Aguilar-Castro3, E. V. Macías-Melo3, F. Elizalde-Blancas2, J. M. Riesco-Ávila2, F. J. García-Rodríguez4

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 571-602, 2020, DOI:10.32604/cmes.2020.08677

    Abstract In the present study, an analysis of the heat and mass transfer in a ventilated cavity in a warm climate zone was carried out to analyze, among others, the temperatures and percentage of relative humidity (RH). The governing equations of the mathematical model were solved through the finite volume method. We used the k-ε turbulence mode to find the results of the variables of interest in seven climate records on a given day. The velocity of the inlet flow of the air-H2O mixture was varied through the Reynolds number (Re) from 500 to 10000. The outdoor weather conditions considered were… More >

  • Open Access

    ARTICLE

    Fluid Flow and Convective Heat Transfer in a Water Chemical Condenser

    Mounir Kriraa1,2,*, Khalid Souhar3, Driss Achemlal4, Youssef Ait Yassine5,6, Abdelmajid Farchi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 199-209, 2020, DOI:10.32604/fdmp.2020.07986

    Abstract In this paper, a detailed investigation of water (Pr ¼ 7:0) convection in a chemical condenser is carried out. Two openings are located along one side of the cavity. The Navier-Stokes equations are solved in the frame of a control volume method using the SIMPLEC algorithm to implement adequate coupling of pressure and velocity. Special emphasis is given to the influence of the Reynolds number, the tilt of the channel and the Rayleigh number on the convective heat transfer. Results are presented and discussed allowing the control parameters to span relatively wide intervals: Rayleigh number (104 ≤ Ra ≤ 5… More >

Displaying 61-70 on page 7 of 128. Per Page