Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    AC Fault Characteristic Analysis and Fault Ride-through of Offshore Wind Farms Based on Hybrid DRU-MMC

    Haokai Xie1, Yi Lu1, Xiaojun Ni1, Yilei Gu1, Sihao Fu2,*, Wenyao Ye3, Zheren Zhang2, Zheng Xu2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070934 - 27 January 2026

    Abstract With the rapid development of large-scale offshore wind farms, efficient and reliable power transmission systems are urgently needed. Hybrid high-voltage direct current (HVDC) configurations combining a diode rectifier unit (DRU) and a modular multilevel converter (MMC) have emerged as a promising solution, offering advantages in cost-effectiveness and control capability. However, the uncontrollable nature of the DRU poses significant challenges for system stability under offshore AC fault conditions, particularly due to its inability to provide fault current or voltage support. This paper investigates the offshore AC fault characteristics and fault ride-through (FRT) strategy of a hybrid… More >

  • Open Access

    ARTICLE

    Probabilistic Graphical Model-Based Operational Reliability-Centric Design of Offshore Wind Farm Feeder Layouts

    Qiuyu Lu1, Yunqi Yan2, Yang Liu1, Ying Chen2,*, Yinguo Yang1, Tannan Xiao3, Guobing Wu1

    Energy Engineering, Vol.122, No.12, pp. 4799-4814, 2025, DOI:10.32604/ee.2025.069131 - 27 November 2025

    Abstract The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system (ECS) designs that prioritize lifetime operational reliability. Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints. This paper introduces a novel, two-stage optimization framework for offshore wind farm (OWF) ECS planning that systematically incorporates reliability. The first stage employs Mixed-Integer Linear Programming (MILP) to determine an optimal radial network topology, considering linearized reliability approximations and geographical constraints. The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained More >

  • Open Access

    ARTICLE

    Integrated Experimental and Numerical Analysis of Particle Migration Effects on Produced Water Reinjection in Offshore Reservoirs

    Mengna Cheng1, Hao Guo2, Feng Cao2, Jie Gong1, Fengshuang Du1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2629-2650, 2025, DOI:10.32604/fdmp.2025.070344 - 30 October 2025

    Abstract Produced water reinjection is a common strategy in offshore oilfield operations, yet the presence of solid particles in produced water can lead to localized formation pressure buildup, increasing the risk of rock fracturing and leakage. In this study, we present an integrated experimental and numerical investigation to quantify the effects of particle migration on formation pressure and the spatial diffusion of injected water. Dynamic plugging experiments were performed to systematically examine the influence of injection rate and injection volume on core permeability. Results demonstrate that higher injection rates substantially reduce permeability, and the derived relationship More >

  • Open Access

    ARTICLE

    Migration and Distribution Laws of Proppants in Complex Lithology Reservoirs in Offshore Areas

    Mao Jiang1, Jianshu Wu1, Chengyong Peng1, Xuesong Xing1, Yishan Lou2,3, Yi Liu2,3,*, Shanyong Liu2,3

    Energy Engineering, Vol.122, No.10, pp. 4019-4034, 2025, DOI:10.32604/ee.2025.067236 - 30 September 2025

    Abstract Fracture conductivity is a key factor to determine the fracturing effect. Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures. To address challenges associated with the low-permeability reservoirs in the Lufeng Oilfield of the South China Sea—including high heterogeneity, complex lithology, and suboptimal fracturing outcomes—JRC (Joint Roughness Coefficient) was employed to quantitatively characterize the lithological properties of the target formation. A CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) two-way coupling approach was then utilized to construct a fracture channel model that simulates proppant transport dynamics. The proppant particle size under different… More >

  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    PROCEEDINGS

    Techno-Economic Analysis of Offshore Hydrogen Energy Storage and Transportation Based on Levelized Cost

    Ziming Hu1, Jingfa Li1,*, Chaoyang Fan1, Jiale Xiao1, Huijie Huang2, Bo Yu1, Baocheng Shi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010823

    Abstract Hydrogen production from offshore wind power is an effective means to address the challenges of wind power grid integration and has emerged as a focal point in the development and research of offshore wind energy in recent years. However, the current state of hydrogen storage and transportation technologies for offshore applications lacks comprehensive economic analysis. This study aims to provide a thorough economic evaluation of these technologies by considering both fixed investment costs and operational and maintenance costs. A levelized cost model is employed to analyze four offshore hydrogen storage and transportation schemes: gas hydrogen… More >

  • Open Access

    PROCEEDINGS

    Research on the Vertical Fracture Propagation Behavior of Deep Offshore Sandstone Reservoirs

    Weishuai Zhang, Fengjiao Wang, Yikun Liu*, Yilin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010789

    Abstract The mechanism of vertical extension in high-volume hydraulic fracturing is of significant importance for the volumetric transformation of low-permeability reservoirs in deep offshore sandstone formations. The complexity of fracture propagation behavior is influenced by the characteristics of discontinuous thin layers in the vertical plane. However, the mechanisms and influencing factors of fracture extension in the vertical direction during high-volume hydraulic fracturing remain unclear. This study integrates true triaxial hydraulic fracturing experiments with acoustic emission (AE) monitoring, employing a nonlinear finite element method to establish a multi-thin interlayer fracturing model based on seepage-stress-damage coupling. It investigates… More >

  • Open Access

    ARTICLE

    A Time-Domain Irregular Wave Model with Different Random Numbers for FOWT Support Structures

    Shen-Haw Ju*, Yi-Chen Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1631-1654, 2025, DOI:10.32604/cmes.2025.067679 - 31 August 2025

    Abstract This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform (IFFT). Considering the substantial displacement effects that Floating Offshore Wind Turbine (FOWT) support structures undergo when subjected to wave loads, the time-domain wave method is more suitable, while the frequency-domain method requiring IFFT cannot be used for moving bodies. Nonetheless, the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle. Thus, the paper incorporates various numerical schemes, including parallel computing and extrapolation of wave forces… More >

  • Open Access

    ARTICLE

    The Design and Implementation of a Biomechanics-Driven Structural Safety Monitoring System for Offshore Wind Power Step-Up Stations

    Ruigang Zhang1,*, Qihui Yan2, Jialiang Wang1, Hao Wang1, Jie Sun2, Junjiao Shi2

    Energy Engineering, Vol.122, No.9, pp. 3609-3624, 2025, DOI:10.32604/ee.2025.066880 - 26 August 2025

    Abstract As the core facility of offshore wind power systems, the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms. With the global energy transition toward green and low-carbon goals, offshore wind power has emerged as a key renewable energy source, yet its booster stations face harsh marine environments, including persistent wave impacts, salt spray corrosion, and equipment-induced vibrations. Traditional monitoring methods relying on manual inspections and single-dimensional sensors suffer from critical limitations: low efficiency, poor real-time performance, and inability to capture millinewton-level stress fluctuations that signal early structural fatigue.… More >

Displaying 1-10 on page 1 of 44. Per Page