Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform

    Yingkai Dong1,2, Chaohe Chen2,*, Guangyan Jia2, Lidai Wang3, Jian Bai1

    Energy Engineering, Vol.121, No.5, pp. 1173-1193, 2024, DOI:10.32604/ee.2024.046432 - 30 April 2024

    Abstract This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system. Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes, we analyze the factors that affect the insulation effect of the drilling rig system. These factors include the thermal conductivity of the insulation material, the thickness of the insulation layer, ambient temperature, and wind speed. We optimize the thermal insulation material of the polar drilling rig system using a steady-state method… More >

  • Open Access

    ARTICLE

    Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations

    Zhoujie Zhu1, Gang Wang1, Qingquan Liu1, Guojun Wang2, Rui Dong2, Dayong Zhang2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 625-639, 2024, DOI:10.32604/fdmp.2023.042128 - 12 January 2024

    Abstract Important challenges must be addressed to make wind turbines sustainable renewable energy sources. A typical problem concerns the design of the foundation. If the pile diameter is larger than that of the jacket platform, traditional mechanical models cannot be used. In this study, relying on the seabed soil data of an offshore wind farm, the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters. An approach to determine the equivalent pile length is also proposed accordingly. The results provide evidence for the effectiveness and reliability More >

  • Open Access

    PROCEEDINGS

    Field Observation and Numerical Simulation of Extreme Met-Ocean Conditions: A Case Study of Typhoon Events in South China Sea

    Chen Gu1,*, Caiyu Wang1, Mengjiao Du2, Kan Yi2, Bihong Zhu1, Hao Wang2, Shu Dai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09776

    Abstract Site measurement is essential to the meteorological and oceanographic parameters of offshore wind farms. A floating lidar measurement buoy was deployed at a Qingzhou VI wind farm where is 45-80 km away from Guangdong coast. The field observation including wind and wave data start from March, 2021.The lidar wind data is compared and calibrated with the fixed wind tower data for three months, the accuracy meets the standard of stadge3 carbon trust. In this study, all these data are used to recalibrate for the met-ocean model to relies extreme conditions, such as Typhoon Kompasu(2118) and More >

  • Open Access

    ARTICLE

    A Feasibility Study of Using Geothermal Energy to Enhance Natural Gas Production from Offshore Gas Hydrate Reservoirs by CO2 Swapping

    Md Nahin Mahmood*, Boyun Guo

    Energy Engineering, Vol.120, No.12, pp. 2707-2720, 2023, DOI:10.32604/ee.2023.042996 - 29 November 2023

    Abstract The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate (NGH) reservoirs, primarily due to the low productivity of wells and the high operational costs involved. The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO2 swapping technique. The present study expands the research scope of the authors beyond their previous publication, which exclusively examined the generation of methane from marine gas hydrates. Specifically, the current investigation explores the… More >

  • Open Access

    ARTICLE

    Capacity Optimization Configuration of Hydrogen Production System for Offshore Surplus Wind Power

    Yanshan Lu1, Binbin He1, Jun Jiang1, Ruixiao Lin2,*, Xinzhen Zhang2, Zaimin Yang3, Zhi Rao3, Wenchuan Meng3, Siyang Sun3

    Energy Engineering, Vol.120, No.12, pp. 2803-2818, 2023, DOI:10.32604/ee.2023.042328 - 29 November 2023

    Abstract To solve the problem of residual wind power in offshore wind farms, a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power. By studying the mathematical model of wind power output and calculating surplus wind power, as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank, an innovative capacity optimization allocation model was established. The objective of the model was to achieve the lowest total net present value over the entire life cycle.… More >

  • Open Access

    ARTICLE

    Simulation of Offshore Wind Turbine Blade Docking Based on the Stewart Platform

    Yi Zhang*, Jiamin Guo, Huanghua Peng

    Energy Engineering, Vol.120, No.11, pp. 2489-2502, 2023, DOI:10.32604/ee.2023.029496 - 31 October 2023

    Abstract The windy environment is the main cause affecting the efficiency of offshore wind turbine installation. In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high wind speed conditions, the Stewart platform is used as an auxiliary tool to help dock the wind turbine blade in this paper. In order to verify the effectiveness of the Stewart platform for blade docking, a blade docking simulation system consisting of the Stewart platform, wind turbine blade, and wind load calculation module was built based on Simulink/Simscape Multibody. At the same time, More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Non-Gaussian Winds and Application on Floating Offshore Wind Turbines

    Shu Dai1,*, Bert Sweetman2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09687

    Abstract Short-term wind process is normally assumed to be a Gaussian distribution, such as TurbSim, the widely used 3D wind field tool. Nowadays, newest researches indicate that non-Gaussian wind model is believed to be more accurate according to the field observation data. A new numerical method is proposed to generate non-Gaussian wind filed using translation process theory and spectral representation method. This study presents a comprehensive investigation on power production and blades fatigue damage of floating offshore wind turbines (FOWTs) to the non-Gaussian wind field. The comparisons of Gaussian and non-Gaussian simulation results indicate that the More >

  • Open Access

    ARTICLE

    Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization

    Zhonghao Qian1, Hanyi Ma1, Jun Rao2, Jun Hu1, Lichengzi Yu2,*, Caoyi Feng1, Yunxu Qiu1, Kemo Ding1

    Energy Engineering, Vol.120, No.9, pp. 2013-2027, 2023, DOI:10.32604/ee.2023.028859 - 03 August 2023

    Abstract The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms. To improve the voltage stability and reactive power economy of wind farms, the improved particle swarm optimization is used to optimize the reactive power planning in wind farms. First, the power flow of offshore wind farms is modeled, analyzed and calculated. To improve the global search ability and local optimization ability of particle swarm optimization, the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor. Taking the minimum active power… More >

  • Open Access

    ARTICLE

    Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing

    Huanan Yu1, Gang Han1,*, Hansong Luo2, He Wang1

    Energy Engineering, Vol.120, No.9, pp. 2029-2057, 2023, DOI:10.32604/ee.2023.028365 - 03 August 2023

    Abstract Aiming at the problem that most of the cables in the power collection system of offshore wind farms are buried deep in the seabed, which makes it difficult to detect faults, this paper proposes a two-step fault location method based on compressed sensing and ranging equation. The first step is to determine the fault zone through compressed sensing, and improve the data measurement, dictionary design and algorithm reconstruction: Firstly, the phase-locked loop trigonometric function method is used to suppress the spike phenomenon when extracting the fault voltage, so that the extracted voltage value will not… More >

  • Open Access

    ARTICLE

    Assessment of Aged Offshore Jacket Type Platforms Considering Environmental Loads and Degradation Parameters

    Yazeed Al-Radhi1,*, Farzad Hejazi2, Azmi Abdulkarim3, Ali Feroozi4

    Structural Durability & Health Monitoring, Vol.17, No.2, pp. 89-113, 2023, DOI:10.32604/sdhm.2023.011439 - 09 May 2023

    Abstract Offshore steel structures are a common investment in oil and gas industries operating in shallow to medium depth seas. These structures have become increasingly popular since the mid-19th century, with a typical design life of 30-50 years. Despite their popularity, the structural integrity of existing offshore structures remains a controversial topic. Environmental loads and material degradation have been identified as significant factors that can compromise the structural integrity of offshore structures. To address this issue, this study aims to investigate the reserved strength capacity of a selected offshore structure located in the Malaysian Seas. The… More >

Displaying 1-10 on page 1 of 30. Per Page