Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Concurrent Design on Three-Legged Jacket Structure and Transition Piece of Offshore Wind Turbine by Exploiting Topology Optimization

    Yiming Zhou1, Jinhua Zhang2,3, Kai Long2,*, Ayesha Saeed2, Yutang Chen2, Rongrong Geng2, Tao Tao4, Xiaohui Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1743-1761, 2025, DOI:10.32604/cmes.2025.063034 - 30 May 2025

    Abstract The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine (OWT) connected to the steel tower, which determines the overall structural dynamic performance of the entire OWT. Ideally, optimal performance can be realized by effectively coordinating two components, notwithstanding their separate design processes. In pursuit of this objective, this paper proposes a concurrent design methodology for the jacket structure and transition piece by exploiting topology optimization (TO). The TO for a three-legged jacket foundation is formulated by minimizing static compliance. In contrast to conventional TO, two separated volume fractions… More >

  • Open Access

    ARTICLE

    Hydrogen-Methane Blend Storage in Depleted Reservoirs: An Option for Reusing Decommissioned Offshore Platforms

    Anna Chiara Uggenti1, Giorgio Rech2, Raffaella Gerboni2,*, Gianmario Ledda2, Amedeo Aliberti1, Claudia Vivalda3, Emanuela Bruno2, Andrea Carpignano2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 757-782, 2025, DOI:10.32604/fdmp.2025.062347 - 06 May 2025

    Abstract The paper presents an innovative approach to studying the reuse of a decommissioned natural gas production platform for the seasonal storage and extraction of a hydrogen-methane (H2-CH4) mixture from a depleted reservoir. The reuse plan involves removing outdated equipment from the platform’s decks while retaining essential components such as wellheads and separators. Exploiting a depleted reservoir for the injection of an H2-CH4 mixture requires a thorough understanding of its specific characteristics. This paper focuses on the engineering approach adopted in the basic design phase for such a conversion, providing recommendations and HSE guidelines. Given the hazardous… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted

    Xiangyang Cao1,2, Yaojie Zheng1,2, Hanbin Xiao1,2,*, Min Xiao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 289-334, 2025, DOI:10.32604/cmes.2025.063954 - 11 April 2025

    Abstract This study investigates the Maximum Power Point Tracking (MPPT) control method of offshore wind-photovoltaic hybrid power generation system with offshore crane-assisted. A new algorithm of Global Fast Integral Sliding Mode Control (GFISMC) is proposed based on the tip speed ratio method and sliding mode control. The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter. An offshore wind power generation system model is presented to verify the algorithm effect. An offshore More >

  • Open Access

    ARTICLE

    A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios

    Zeshuang Song1, Xiao Wang1,*, Qing Wu1, Yanting Tao1, Linghua Xu1, Yaohua Yin2, Jianguo Yan3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 985-1008, 2024, DOI:10.32604/cmc.2024.055614 - 15 October 2024

    Abstract This research is the first application of Unmanned Aerial Vehicles (UAVs) equipped with Multi-access Edge Computing (MEC) servers to offshore wind farms, providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms. The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally, which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal. Finally, the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem, and a task offloading model… More >

  • Open Access

    ARTICLE

    Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform

    Yingkai Dong1,2, Chaohe Chen2,*, Guangyan Jia2, Lidai Wang3, Jian Bai1

    Energy Engineering, Vol.121, No.5, pp. 1173-1193, 2024, DOI:10.32604/ee.2024.046432 - 30 April 2024

    Abstract This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system. Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes, we analyze the factors that affect the insulation effect of the drilling rig system. These factors include the thermal conductivity of the insulation material, the thickness of the insulation layer, ambient temperature, and wind speed. We optimize the thermal insulation material of the polar drilling rig system using a steady-state method… More >

  • Open Access

    ARTICLE

    Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations

    Zhoujie Zhu1, Gang Wang1, Qingquan Liu1, Guojun Wang2, Rui Dong2, Dayong Zhang2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 625-639, 2024, DOI:10.32604/fdmp.2023.042128 - 12 January 2024

    Abstract Important challenges must be addressed to make wind turbines sustainable renewable energy sources. A typical problem concerns the design of the foundation. If the pile diameter is larger than that of the jacket platform, traditional mechanical models cannot be used. In this study, relying on the seabed soil data of an offshore wind farm, the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters. An approach to determine the equivalent pile length is also proposed accordingly. The results provide evidence for the effectiveness and reliability More >

  • Open Access

    PROCEEDINGS

    Field Observation and Numerical Simulation of Extreme Met-Ocean Conditions: A Case Study of Typhoon Events in South China Sea

    Chen Gu1,*, Caiyu Wang1, Mengjiao Du2, Kan Yi2, Bihong Zhu1, Hao Wang2, Shu Dai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09776

    Abstract Site measurement is essential to the meteorological and oceanographic parameters of offshore wind farms. A floating lidar measurement buoy was deployed at a Qingzhou VI wind farm where is 45-80 km away from Guangdong coast. The field observation including wind and wave data start from March, 2021.The lidar wind data is compared and calibrated with the fixed wind tower data for three months, the accuracy meets the standard of stadge3 carbon trust. In this study, all these data are used to recalibrate for the met-ocean model to relies extreme conditions, such as Typhoon Kompasu(2118) and More >

  • Open Access

    ARTICLE

    A Feasibility Study of Using Geothermal Energy to Enhance Natural Gas Production from Offshore Gas Hydrate Reservoirs by CO2 Swapping

    Md Nahin Mahmood*, Boyun Guo

    Energy Engineering, Vol.120, No.12, pp. 2707-2720, 2023, DOI:10.32604/ee.2023.042996 - 29 November 2023

    Abstract The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate (NGH) reservoirs, primarily due to the low productivity of wells and the high operational costs involved. The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO2 swapping technique. The present study expands the research scope of the authors beyond their previous publication, which exclusively examined the generation of methane from marine gas hydrates. Specifically, the current investigation explores the… More >

  • Open Access

    ARTICLE

    Capacity Optimization Configuration of Hydrogen Production System for Offshore Surplus Wind Power

    Yanshan Lu1, Binbin He1, Jun Jiang1, Ruixiao Lin2,*, Xinzhen Zhang2, Zaimin Yang3, Zhi Rao3, Wenchuan Meng3, Siyang Sun3

    Energy Engineering, Vol.120, No.12, pp. 2803-2818, 2023, DOI:10.32604/ee.2023.042328 - 29 November 2023

    Abstract To solve the problem of residual wind power in offshore wind farms, a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power. By studying the mathematical model of wind power output and calculating surplus wind power, as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank, an innovative capacity optimization allocation model was established. The objective of the model was to achieve the lowest total net present value over the entire life cycle.… More >

  • Open Access

    ARTICLE

    Simulation of Offshore Wind Turbine Blade Docking Based on the Stewart Platform

    Yi Zhang*, Jiamin Guo, Huanghua Peng

    Energy Engineering, Vol.120, No.11, pp. 2489-2502, 2023, DOI:10.32604/ee.2023.029496 - 31 October 2023

    Abstract The windy environment is the main cause affecting the efficiency of offshore wind turbine installation. In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high wind speed conditions, the Stewart platform is used as an auxiliary tool to help dock the wind turbine blade in this paper. In order to verify the effectiveness of the Stewart platform for blade docking, a blade docking simulation system consisting of the Stewart platform, wind turbine blade, and wind load calculation module was built based on Simulink/Simscape Multibody. At the same time, More >

Displaying 11-20 on page 2 of 44. Per Page