Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (295)
  • Open Access

    ARTICLE

    Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN

    Imtiaz Ahmad1, Tariq Hussain2, Babar Shah3, Altaf Hussain4, Iqtidar Ali1, Farman Ali5,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3585-3629, 2024, DOI:10.32604/cmc.2024.050596 - 20 June 2024

    Abstract Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost. One of them is a sensor network with embedded sensors working as the primary nodes, termed Wireless Sensor Networks (WSNs), in which numerous sensors are connected to at least one Base Station (BS). These sensors gather information from the environment and transmit it to a BS or gathering location. WSNs have several challenges, including throughput, energy usage, and network lifetime concerns. Different strategies have been applied to get over these… More >

  • Open Access

    ARTICLE

    A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics—A Supply Chain Backlog Elimination Framework

    Yasser Hachaichi1, Ayman E. Khedr1, Amira M. Idrees2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4081-4105, 2024, DOI:10.32604/cmc.2024.048929 - 20 June 2024

    Abstract The diversity of data sources resulted in seeking effective manipulation and dissemination. The challenge that arises from the increasing dimensionality has a negative effect on the computation performance, efficiency, and stability of computing. One of the most successful optimization algorithms is Particle Swarm Optimization (PSO) which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task. This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which… More >

  • Open Access

    ARTICLE

    Maximizing Resource Efficiency in Cloud Data Centers through Knowledge-Based Flower Pollination Algorithm (KB-FPA)

    Nidhika Chauhan1, Navneet Kaur2, Kamaljit Singh Saini3, Sahil Verma3, Kavita3, Ruba Abu Khurma4,5, Pedro A. Castillo6,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3757-3782, 2024, DOI:10.32604/cmc.2024.046516 - 20 June 2024

    Abstract Cloud computing is a dynamic and rapidly evolving field, where the demand for resources fluctuates continuously. This paper delves into the imperative need for adaptability in the allocation of resources to applications and services within cloud computing environments. The motivation stems from the pressing issue of accommodating fluctuating levels of user demand efficiently. By adhering to the proposed resource allocation method, we aim to achieve a substantial reduction in energy consumption. This reduction hinges on the precise and efficient allocation of resources to the tasks that require those most, aligning with the broader goal of… More >

  • Open Access

    ARTICLE

    Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm

    Mutasem K. Alsmadi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5175-5200, 2024, DOI:10.32604/cmc.2024.044065 - 20 June 2024

    Abstract Lung cancer is among the most frequent cancers in the world, with over one million deaths per year. Classification is required for lung cancer diagnosis and therapy to be effective, accurate, and reliable. Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner. Machine Learning (ML) has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique. Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification. Normally,… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

    Guangfei Jia*, Yanchao Meng, Zhiying Qin

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 445-463, 2024, DOI:10.32604/sdhm.2024.049298 - 05 June 2024

    Abstract The vibration signals of rolling bearings exhibit nonlinear and non-stationary characteristics under the influence of noise. In intelligent fault diagnosis, unprocessed signals will lead to weak fault characteristics and low diagnostic accuracy. To solve the above problem, a fault diagnosis method based on parameter optimization feature mode decomposition and improved deep belief networks is proposed. The feature mode decomposition is used to decompose the vibration signals. The parameter adaptation of feature mode decomposition is implemented by improved whale optimization algorithm including Levy flight strategy and adaptive weight. The selection of activation function and parameters is More > Graphic Abstract

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

  • Open Access

    ARTICLE

    Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm

    Huanan Yu, Hangyu Li, He Wang, Shiqiang Li*

    Energy Engineering, Vol.121, No.6, pp. 1535-1555, 2024, DOI:10.32604/ee.2024.046936 - 21 May 2024

    Abstract The escalating deployment of distributed power sources and random loads in DC distribution networks has amplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimal configuration of measurement points, this paper presents an optimal configuration scheme for fault location measurement points in DC distribution networks based on an improved particle swarm optimization algorithm. Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing. The model aims to achieve the minimum number of measurement points while attaining the best compressive sensing reconstruction effect. It incorporates constraints from… More >

  • Open Access

    ARTICLE

    Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods

    Ji Zhou1,2, Yijun Lu3, Qiong Tian1,2, Haichuan Liu3, Mahdi Hasanipanah4,5,*, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1595-1617, 2024, DOI:10.32604/cmes.2024.048398 - 20 May 2024

    Abstract Blasting in surface mines aims to fragment rock masses to a proper size. However, flyrock is an undesirable effect of blasting that can result in human injuries. In this study, support vector regression (SVR) is combined with four algorithms: gravitational search algorithm (GSA), biogeography-based optimization (BBO), ant colony optimization (ACO), and whale optimization algorithm (WOA) for predicting flyrock in two surface mines in Iran. Additionally, three other methods, including artificial neural network (ANN), kernel extreme learning machine (KELM), and general regression neural network (GRNN), are employed, and their performances are compared to those of four More >

  • Open Access

    ARTICLE

    Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection

    Deng Yang1, Chong Zhou1,*, Xuemeng Wei2, Zhikun Chen3, Zheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1563-1593, 2024, DOI:10.32604/cmes.2024.048049 - 20 May 2024

    Abstract In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The… More >

  • Open Access

    ARTICLE

    Adaptive Network Sustainability and Defense Based on Artificial Bees Colony Optimization Algorithm for Nature Inspired Cyber Security

    Chirag Ganguli1, Shishir Kumar Shandilya2, Michal Gregus3, Oleh Basystiuk4,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 739-758, 2024, DOI:10.32604/csse.2024.042607 - 20 May 2024

    Abstract Cyber Defense is becoming a major issue for every organization to keep business continuity intact. The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm (ABC) as an Nature Inspired Cyber Security mechanism to achieve adaptive defense. It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node. Businesses today have adapted their service distribution models to include the use of the Internet, allowing them to effectively manage and interact with their customer data. This shift has created an increased reliance on online services to store… More >

  • Open Access

    ARTICLE

    Ensemble Deep Learning Based Air Pollution Prediction for Sustainable Smart Cities

    Maha Farouk Sabir1, Mahmoud Ragab2,3,*, Adil O. Khadidos2, Khaled H. Alyoubi1, Alaa O. Khadidos1,4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 627-643, 2024, DOI:10.32604/csse.2023.041551 - 20 May 2024

    Abstract Big data and information and communication technologies can be important to the effectiveness of smart cities. Based on the maximal attention on smart city sustainability, developing data-driven smart cities is newly obtained attention as a vital technology for addressing sustainability problems. Real-time monitoring of pollution allows local authorities to analyze the present traffic condition of cities and make decisions. Relating to air pollution occurs a main environmental problem in smart city environments. The effect of the deep learning (DL) approach quickly increased and penetrated almost every domain, comprising air pollution forecast. Therefore, this article develops… More >

Displaying 61-70 on page 7 of 295. Per Page