Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (218)
  • Open Access


    Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm

    D. Vidyabharathi1,*, V. Mohanraj2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2559-2573, 2023, DOI:10.32604/iasc.2023.032255

    Abstract For training the present Neural Network (NN) models, the standard technique is to utilize decaying Learning Rates (LR). While the majority of these techniques commence with a large LR, they will decay multiple times over time. Decaying has been proved to enhance generalization as well as optimization. Other parameters, such as the network’s size, the number of hidden layers, dropouts to avoid overfitting, batch size, and so on, are solely based on heuristics. This work has proposed Adaptive Teaching Learning Based (ATLB) Heuristic to identify the optimal hyperparameters for diverse networks. Here we consider three architectures Recurrent Neural Networks (RNN),… More >

  • Open Access


    Many-Objective Optimization-Based Task Scheduling in Hybrid Cloud Environments

    Mengkai Zhao1, Zhixia Zhang2, Tian Fan1, Wanwan Guo1, Zhihua Cui1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2425-2450, 2023, DOI:10.32604/cmes.2023.026671

    Abstract Due to the security and scalability features of hybrid cloud architecture, it can better meet the diverse requirements of users for cloud services. And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud. However, most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling, even ignoring the conflicts between its security privacy features and other requirements. Based on the above problems, a many-objective hybrid cloud task scheduling optimization model (HCTSO) is constructed combining risk rate, resource utilization, total cost, and task completion time. Meanwhile, an opposition-based learning knee point-driven many-objective evolutionary… More >

  • Open Access


    Research on Comprehensive Control of Power Quality of Port Distribution Network Considering Large-Scale Access of Shore Power Load

    Yuqian Qi*, Mingshui Li, Yu Lu, Baitong Li

    Energy Engineering, Vol.120, No.5, pp. 1185-1201, 2023, DOI:10.32604/ee.2023.025574

    Abstract In view of the problem of power quality degradation of port distribution network after the large-scale application of shore power load, a method of power quality management of port distribution network is proposed. Based on the objective function of the best power quality management effect and the smallest investment cost of the management device, the optimization model of power quality management in the distribution network after the large-scale application of large-capacity shore power is constructed. Based on the balance between the economic demand of distribution network resources optimization and power quality management capability, the power quality of distribution network is… More >

  • Open Access


    Blockchain-Based Power Transaction Method for Active Distribution Network

    Fei Zeng1, Zhinong Wei1, Haiteng Han1,*, Yang Chen2

    Energy Engineering, Vol.120, No.5, pp. 1067-1080, 2023, DOI:10.32604/ee.2023.022479

    Abstract A blockchain-based power transaction method is proposed for Active Distribution Network (ADN), considering the poor security and high cost of a centralized power trading system. Firstly, the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks. Secondly, considering the transaction needs between users and power suppliers in ADN, an energy request mechanism is proposed, and the optimization objective function is designed by integrating cost aware requests and storage aware requests. Finally, the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum… More >

  • Open Access


    Deep Learning-Based FOPID Controller for Cascaded DC-DC Converters

    S. Hema1,*, Y. Sukhi2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1503-1519, 2023, DOI:10.32604/csse.2023.036577

    Abstract Smart grids and their technologies transform the traditional electric grids to assure safe, secure, cost-effective, and reliable power transmission. Non-linear phenomena in power systems, such as voltage collapse and oscillatory phenomena, can be investigated by chaos theory. Recently, renewable energy resources, such as wind turbines, and solar photovoltaic (PV) arrays, have been widely used for electric power generation. The design of the controller for the direct Current (DC) converter in a PV system is performed based on the linearized model at an appropriate operating point. However, these operating points are ever-changing in a PV system, and the design of the… More >

  • Open Access


    A Multimodel Transfer-Learning-Based Car Price Prediction Model with an Automatic Fuzzy Logic Parameter Optimizer

    Ping-Huan Kuo1,2, Sing-Yan Chen1, Her-Terng Yau1,2,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1577-1596, 2023, DOI:10.32604/csse.2023.036292

    Abstract Cars are regarded as an indispensable means of transportation in Taiwan. Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expanded. In this study, a price prediction system for used BMW cars was developed. Nine parameters of used cars, including their model, registration year, and transmission style, were analyzed. The data obtained were then divided into three subsets. The first subset was used to compare the results of each algorithm. The predicted values produced by the two algorithms with the most satisfactory results were used as the input… More >

  • Open Access


    Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm

    José Escorcia-Gutierrez1,*, Roosvel Soto-Diaz2, Natasha Madera3, Carlos Soto3, Francisco Burgos-Florez2, Alexander Rodríguez4, Romany F. Mansour5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1337-1353, 2023, DOI:10.32604/csse.2023.035253

    Abstract Computer-aided diagnosis (CAD) models exploit artificial intelligence (AI) for chest X-ray (CXR) examination to identify the presence of tuberculosis (TB) and can improve the feasibility and performance of CXR for TB screening and triage. At the same time, CXR interpretation is a time-consuming and subjective process. Furthermore, high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis. Therefore, computer-aided diagnosis (CAD) models using machine learning (ML) and deep learning (DL) can be designed for screening TB accurately. With this motivation, this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification… More >

  • Open Access


    Optimized Tuning of LOADng Routing Protocol Parameters for IoT

    Divya Sharma1,*, Sanjay Jain2, Vivek Maik3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1549-1561, 2023, DOI:10.32604/csse.2023.035031

    Abstract Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things (IoT), making it possible to accomplish tasks with less human interaction. However, it faces many problems, including lower capacity links, energy utilization, enhancement of resources and limited resources due to its openness, heterogeneity, limited resources and extensiveness. It is challenging to route packets in such a constrained environment. In an IoT network constrained by limited resources, minimal routing control overhead is required without packet loss. Such constrained environments can be improved through the optimal routing protocol. It is challenging to route packets in such a constrained… More >

  • Open Access


    Hybrid Optimization Algorithm for Resource Allocation in LTE-Based D2D Communication

    Amel Austine*, R. Suji Pramila

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2263-2276, 2023, DOI:10.32604/csse.2023.032323

    Abstract In a cellular network, direct Device-to-Device (D2D) communication enhances Quality of Service (QoS) in terms of coverage, throughput and amount of power consumed. Since the D2D pairs involve cellular resources for communication, the chances of interference are high. D2D communications demand minimum interference along with maximum throughput and sum rate which can be achieved by employing optimal resources and efficient power allocation procedures. In this research, a hybrid optimization model called Genetic Algorithm-Adaptive Bat Optimization (GA-ABO) algorithm is proposed for efficient resource allocation in a cellular network with D2D communication. Simulation analysis demonstrates that the proposed model involves reduced interference… More >

  • Open Access


    A Drone-Based Blood Donation Approach Using an Ant Colony Optimization Algorithm

    Sana Abbas1, Faraha Ashraf1, Fahd Jarad2,3,*, Muhammad Shoaib Sardar1, Imran Siddique4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1917-1930, 2023, DOI:10.32604/cmes.2023.024700

    Abstract This article presents an optimized approach of mathematical techniques in the medical domain by manoeuvring the phenomenon of ant colony optimization algorithm (also known as ACO). A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem (often TSP). The wide use promises to accelerate and offers the opportunity to cultivate health care, particularly in remote or unmerited environments by shrinking lab testing reversal times, empowering just-in-time lifesaving medical supply. More >

Displaying 61-70 on page 7 of 218. Per Page