Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Modeling and Optimization of Solar Collector Design for the Improvement of Solar-Air Source Heat Pump Building Heating System

    Jiarui Wu1, Yuzhen Kang2, Junxiao Feng1,*

    Energy Engineering, Vol.120, No.12, pp. 2783-2802, 2023, DOI:10.32604/ee.2023.029358

    Abstract To enhance system stability, solar collectors have been integrated with air-source heat pumps. This integration facilitates the concurrent utilization of solar and air as energy sources for the system, leading to an improvement in the system's heat generation coefficient, overall efficiency, and stability. In this study, we focus on a residential building located in Lhasa as the target for heating purposes. Initially, we simulate and analyze a solar-air source heat pump combined heating system. Subsequently, while ensuring the system meets user requirements, we examine the influence of solar collector installation angles and collector area on More >

  • Open Access

    ARTICLE

    Distribution Network Optimization Model of Industrial Park with Distributed Energy Resources under the Carbon Neutral Targets

    Xiaobao Yu*, Kang Yang

    Energy Engineering, Vol.120, No.12, pp. 2741-2760, 2023, DOI:10.32604/ee.2023.028041

    Abstract Taking an industrial park as an example, this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources (DERs). The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data. To predict and analyze the load growth of the industrial park, an improved back-propagation algorithm is employed. Furthermore, the study classifies users within the industrial park according to their specific power consumption and supply requirements. This user segmentation allows for the introduction of three constraints: node voltage, wire current, and capacity More >

  • Open Access

    ARTICLE

    Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization

    Xianjing Zhong1, Xianbo Sun1,*, Yuhan Wu2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1599-1619, 2023, DOI:10.32604/cmc.2023.039912

    Abstract To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation, a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization (IGWO) is proposed. Firstly, building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system. Secondly, the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function, and the minimum peak-to-valley of the microgrid’s daily output is taken as the… More >

  • Open Access

    ARTICLE

    Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia

    Shehab Abdulhabib Alzaeemi1, Saratha Sathasivam2,*, Majid Khan bin Majahar Ali2, K. G. Tay1, Muraly Velavan3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1471-1491, 2023, DOI:10.32604/csse.2023.037366

    Abstract Rubber producers, consumers, traders, and those who are involved in the rubber industry face major risks of rubber price fluctuations. As a result, decision-makers are required to make an accurate estimation of the price of rubber. This paper aims to propose hybrid intelligent models, which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data, spanning from January 2016 to March 2021. The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining (RBFNN-kSAT). These algorithms, including Grey Wolf… More >

  • Open Access

    ARTICLE

    Urban Drainage Network Scheduling Strategy Based on Dynamic Regulation: Optimization Model and Theoretical Research

    Xiaoming Fei*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1293-1309, 2023, DOI:10.32604/iasc.2023.038607

    Abstract With the acceleration of urbanization in China, the discharge of domestic sewage and industrial wastewater is increasing, and accidents of sewage spilling out and polluting the environment occur from time to time. Problems such as imperfect facilities and backward control methods are common in the urban drainage network systems in China. Efficient drainage not only strengthens infrastructure such as rain and sewage diversion, pollution source monitoring, transportation, drainage and storage but also urgently needs technical means to monitor and optimize production and operation. Aiming at the optimal control of single-stage pumping stations and the coordinated… More >

  • Open Access

    ARTICLE

    Many-Objective Optimization-Based Task Scheduling in Hybrid Cloud Environments

    Mengkai Zhao1, Zhixia Zhang2, Tian Fan1, Wanwan Guo1, Zhihua Cui1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2425-2450, 2023, DOI:10.32604/cmes.2023.026671

    Abstract Due to the security and scalability features of hybrid cloud architecture, it can better meet the diverse requirements of users for cloud services. And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud. However, most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling, even ignoring the conflicts between its security privacy features and other requirements. Based on the above problems, a many-objective hybrid cloud task scheduling optimization model (HCTSO) is constructed combining risk rate, resource utilization, total cost, and task completion time. Meanwhile, an opposition-based More >

  • Open Access

    ARTICLE

    Research on Multi-Objective Optimization Model of Industrial Microgrid Considering Demand Response Technology and User Satisfaction

    Junhui Li1,*, Jinxin Zhong1, Kailiang Wang1, Yu Luo1, Qian Han2, Jieren Tan2

    Energy Engineering, Vol.120, No.4, pp. 869-884, 2023, DOI:10.32604/ee.2023.021320

    Abstract In the process of wind power, coal power, and energy storage equipment participating in the operation of industrial microgrids, the stable operation of wind-storage industrial microgrids is guaranteed by considering demand response technology and user satisfaction. This paper firstly sorts out the status quo of microgrid operation optimization, and determines the main requirements for user satisfaction considering three types of load characteristics, demand response technology, power consumption benefit loss, user balance power purchase price and wind power consumption evaluation indicators in the system. Secondly, the operation architecture of the windstorage industrial microgrid is designed, and… More >

  • Open Access

    ARTICLE

    A Novel Gradient Boosted Energy Optimization Model (GBEOM) for MANET

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Saleh Alghamdi3, Satish Thatavarti4

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 637-657, 2023, DOI:10.32604/csse.2023.034224

    Abstract Mobile Ad Hoc Network (MANET) is an infrastructure-less network that is comprised of a set of nodes that move randomly. In MANET, the overall performance is improved through multipath multicast routing to achieve the quality of service (quality of service). In this, different nodes are involved in the information data collection and transmission to the destination nodes in the network. The different nodes are combined and presented to achieve energy-efficient data transmission and classification of the nodes. The route identification and routing are established based on the data broadcast by the network nodes. In transmitting… More >

  • Open Access

    ARTICLE

    Ensemble Based Learning with Accurate Motion Contrast Detection

    M. Indirani*, S. Shankar

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1657-1674, 2023, DOI:10.32604/iasc.2023.026148

    Abstract Recent developments in computer vision applications have enabled detection of significant visual objects in video streams. Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization (SPSOM) and Incremental Deep Convolution Neural Networks (IDCNN) for detecting multiple objects. However, the study considered optical flows resulting in assessing motion contrasts. Existing methods have issue with accuracy and error rates in motion contrast detection. Hence, the overall object detection performance is reduced significantly. Thus, consideration of object motions in videos efficiently is a critical issue to be solved. To overcome the above… More >

  • Open Access

    ARTICLE

    Bipolar Interval-Valued Neutrosophic Optimization Model of Integrated Healthcare System

    Sumbal Khalil1, Sajida Kousar1, Nasreen Kausar2, Muhammad Imran3, Georgia Irina Oros4,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6207-6224, 2022, DOI:10.32604/cmc.2022.030547

    Abstract Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set, neutrosophic set, bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data more efficiently and flexibly. Current work is an effort to design a flexible optimization model in the backdrop of interval-valued bipolar neutrosophic sets. Bipolar interval-valued neutrosophic membership grades are picked so that they indicate the restriction of the plausible infringement of the inequalities given in the problem. To prove the adequacy and effectiveness of the method a unified system of sustainable medical healthcare supply chain More >

Displaying 1-10 on page 1 of 24. Per Page