Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (65)
  • Open Access

    ARTICLE

    Effects of high arsenic and fluoride soil concentrations on soybean plants

    Bustingorri C, K Balestrasse, RS Lavado

    Phyton-International Journal of Experimental Botany, Vol.84, No.2, pp. 407-416, 2015, DOI:10.32604/phyton.2015.84.407

    Abstract Arsenic (As) and Fluoride (F) are present in many soils, affecting crops and posing risks in the food chain. We performed pot experiments on spiked soils enriched in these elements either individually or simultaneously, over a wide range of concentrations. Soybean biomass production, grain yield, As and F accumulation and distribution within the plant, and the antioxidant response to these stresses were analyzed. Arsenic was more toxic than F. At As levels >35 mg/kg and F levels >375 mg/kg, yield loss reached 60% and 30%, respectively. At the highest dose of As plants died within 2 weeks, whereas F showed… More >

  • Open Access

    ARTICLE

    Concentration analysis in steay-state of ascorbate radical in soybean seedlings determined by electronic paramagnetic resonancy

    Galatro Andrea, Ivan Rousseau, Susana Puntarulo

    Phyton-International Journal of Experimental Botany, Vol.75, pp. 7-20, 2006, DOI:10.32604/phyton.2006.75.007

    Abstract Electron Paramagnetic Resonance (EPR) has been developed as a versatile field that uses different techniques sharing the common feature of resonant micro-wave radiation absorption by paramagnetic substances. Certain free radicals, such as ascorbyl radical (A•), show an stable spectrum, and can be directly detected by EPR at room temperature. Studies included in this work clearly show that this highly sensitive methodology can be successfully applied to biological systems. Exposure of plants to UV-B radiation was studied as a factor of oxidative stress in plants, and the effect on A steady state concentration was analyzed. A kinetic analysis was performed considering… More >

  • Open Access

    ARTICLE

    Alanine minimises hepatocyte injury after ischemia-reperfusion in an ex vivo rat liver model

    Berengere PAPEGAY1, *, Michaela STADLER1, Vincent Nuyens1, Isabelle SALMON2, Veronique KRUYS3, Jean G. BOOGAERTS1

    BIOCELL, Vol.38, No.1, pp. 25-32, 2014, DOI:10.32604/biocell.2014.38.025

    Abstract Ischemia-reperfusion injury is a determinant in liver injury occurring during surgery, ischemic states and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether alanine, an amino acid precursor of glucose, could protect ex vivo perfused livers of fasting rats from reperfusion injury. The portal vein was cannulated, the liver removed and perfused in a closed ex vivo system. Isolated livers were perfused either with glucose 1 g/L and 10 g/L, or with equal concentrations of alanine (n = 10 in each group). The experiment consisted… More >

  • Open Access

    ARTICLE

    Update on Fe-dependent oxidative metabolism in vivo: An integrative view

    Natacha E PILONI, Elizabeth ROBELLO, Julián G BONETTO, Susana PUNTARULO*

    BIOCELL, Vol.40, No.1, pp. 39-42, 2016, DOI:10.32604/biocell.2016.40.039

    Abstract Fe is essential for human life because it constitutes the required cofactor for proteins of diverse biological functions. However, the development of oxidative stress by exposure to excessive Fe, share signaling pathways with other treatments including activation of redox-sensitive factors. This study was focused on the comparison on the effects of Fe in the brain and other organs in vivo. The oxidative effects triggered by Fe overload strongly depend not only on the administration protocol, but also on the Fe-compound used, and the studied organ. In both the liver and the brain, Fe content drastically increased after Fe-dextran administration. However,… More >

  • Open Access

    ARTICLE

    Oxidative stress in the hydrophilic medium of algae and invertebrates

    Gabriela MALANGA, Paula Mariela GONZÁLEZ, Juan Manuel OSTERA, Susana PUNTARULO*

    BIOCELL, Vol.40, No.1, pp. 35-38, 2016, DOI:10.32604/biocell.2016.40.035

    Abstract The harmful effects of the reactive species may be due to the increase in their steady state concentration either by the enhancement of their production rates and/or the decrease of their consumption rate by antioxidant activity. The ascorbyl radical (A ) can be considered as a final product of radical oxidative transformations of ascorbate (AH-). The ratio A content/AH- content (A /AH-) has been widely used as an interesting tool to estimate mild to moderate oxidative transformations, providing a quick and simple method of diagnosis of stress in the hydrophilic cellular medium. The aim of this work was to summarize… More >

  • Open Access

    ARTICLE

    Oxidative stress in Microcystis aeruginosa as a consequence of global climate change

    Marcelo HERNANDO1, Christian HOUGHTON1, Leda GIANNUZZI2, Bernd KROCK3, Darío ANDRINOLO2, Gabriela MALANGA4,*

    BIOCELL, Vol.40, No.1, pp. 23-26, 2016, DOI:10.32604/biocell.2016.40.023

    Abstract Cyanobacteria are phototrophic organisms with great ecological and economical importance. Species of the genus Microcystis are known for their potential ability to synthesize toxins, notably microcystins. There is a growing interest in the evaluation of oxidative stress in relation to the impact of global climate change on natural ecosystems in different trophic levels. Several studies have focused on the analysis of organismal responses to mitigate the damage by controlling the generation of reactive oxygen species. Variations in environmental factors caused by climate change generate a situation of oxidative damage in Microcystis aeruginosa as a direct or indirect consequence. In this… More >

  • Open Access

    ARTICLE

    Time course and mechanism of brain oxidative stress and damage for redox active and inactive transition metals overload

    Nidia FERRAROTTI1, Rosario MUSACCO-SEBIO2, Christian SAPORITO-MAGRIÑÁ2, Juan Manuel ACOSTA2, Marisa REPETTO2 *

    BIOCELL, Vol.40, No.1, pp. 19-22, 2016, DOI:10.32604/biocell.2016.40.019

    Abstract The objective of this work was to study the in vivo time course of biochemical processes of oxidative damage in the brain of Sprague-Dawley rats that received an acute overload of the redox active metals iron (Fe) and copper (Cu), and the redox inactive cobalt (Co) and nickel (Ni). Oxidative stress indicators (phospholipid and protein oxidation), glutathione (GSH), antioxidant enzymes and NADPH oxidase activities, and the plasma inflammatory cytokine (IL-6) were measured. The results showed that in brain oxidative mechanisms for both sets of metal are different, however in both cases are irreversible. The mechanism for Fe and Cu oxidative… More >

  • Open Access

    ARTICLE

    Adverse effects induced by chromium VI, cadmium and arsenic exposure on hypothalamus-pituitary physiology

    Jimena P. CABILLA, Sonia A. RONCHETTI, Beatriz H. DUVILANSKI*

    BIOCELL, Vol.40, No.1, pp. 15-18, 2016, DOI:10.32604/biocell.2016.40.015

    Abstract Environmental contamination with some metalloids and heavy metals (M/HM) raises concern due to well known adverse effects on health. Among these pollutants, chromium VI (Cr VI), cadmium (Cd) and arsenic (As) are frequently present as a result of natural sources or due to industrial activities. They are able to easily enter the organism and negatively affect many organs and systems. In vivo (exposure to Cr VI, Cd or As through drinking water) and in vitro experiments (primary pituitary cell cultures) were performed in male Wistar rats to address their actions on hypothalamus-pituitary axis. All the M/HM accumulated in hypothalamus and… More >

  • Open Access

    ARTICLE

    Review : Biochemical-molecular markers in unilateral ureteral obstruction

    WALTER MANUCHA

    BIOCELL, Vol.31, No.1, pp. 1-12, 2007, DOI:10.32604/biocell.2007.31.001

    Abstract Congenital obstructive nephropathy is the primary cause of end-stage renal disease in children. Rapid diagnosis and initiation of the treatment are vital to preserve function and/or to slow down renal injury. Obstructive uropathy effects -decline in the plasmatic renal flow and glomerular filtration rate, interstitial infiltrate of leukocytes, significant decrease of the urine concentration, loss of the capacity to concentrate urine as well as fibrosis and apoptosis- are a consequence of a variety of factors that work in complex ways and are still not fully understood. Mediators as angiotensin II, transforming growth factor-β (TGF-β) and nitric oxide (NO) have been… More >

  • Open Access

    ARTICLE

    Association between preterm birth risk and polymorphism and expression of the DNA repair genes OGG1 and APE1 in Saudi women

    Arwa Osama NEMER1, Mohammad Saud AL ANAZI2, Ramesa Shafi BHAT1*, Arjumand S. WARSY3, Zeneb A BABAY4, Mohammad H. ADDAR4, Jilani SHAIK2, Sooad AL-DAIHAN1

    BIOCELL, Vol.42, No.1, pp. 1-6, 2018, DOI:10.32604/biocell.2018.07005

    Abstract Genomic instability and mutations caused by increases in oxidative stress during pregnancy can damage the fetoplacental unit and can upshot preterm birth. Oxidative damage to DNA may possibly be involved in etiology of preterm birth (PTB) which can be repaired by DNA repair gene. In the present study, we assessed the association of base excision repair gene family by analyzing the association of single nucleotide polymorphisms and genes expression in 8-oxoguanine glycosylase-1 (OGG1) and apurinic-apyrimidinic endonuclease 1 (APE1) genes with risk of preterm birth in Saudi women. We analyzed genotypes of four single nucleotide polymorphisms (SNPs) (rs1052133, rs293795, rs2072668 and… More >

Displaying 51-60 on page 6 of 65. Per Page