Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Intelligent Modulation Recognition of Communication Signal for Next-Generation 6G Networks

    Mrim M. Alnfiai*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5723-5740, 2023, DOI:10.32604/cmc.2023.033408 - 28 December 2022

    Abstract In recent years, the need for a fast, efficient and a reliable wireless network has increased dramatically. Numerous 5G networks have already been tested while a few are in the early stages of deployment. In non-cooperative communication scenarios, the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them. The recent advancements in both Machine Learning (ML) and Deep Learning (DL) models demand the development of effective modulation recognition models with self-learning capability. In this background, the current research article designs a Deep Learning enabled Intelligent… More >

  • Open Access

    ARTICLE

    Optimal Structural Parameters for a Plastic Centrifugal Pump Inducer

    Wenbin Luo1,*, Lingfeng Tang1, Yuting Yan2, Yifang Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 869-899, 2023, DOI:10.32604/fdmp.2022.022280 - 02 November 2022

    Abstract The aim of the study is to determine the optimal structural parameters for a plastic centrifugal pump inducer within the framework of an orthogonal experimental method. For this purpose, a numerical study of the related flow field is performed using CFX. The shaft power and the head of the pump are taken as the evaluation indicators. Accordingly, the examined variables are the thickness (S), the blade cascade degree (t), the blade rim angle (β1), the blade hub angle (β2) and the hub length (L). The impact of each structural parameter on each evaluation index is More >

  • Open Access

    ARTICLE

    A Hyperparameter Optimization for Galaxy Classification

    Fatih Ahmet Şenel*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4587-4600, 2023, DOI:10.32604/cmc.2023.033155 - 31 October 2022

    Abstract In this study, the morphological galaxy classification process was carried out with a hybrid approach. Since the Galaxy classification process may contain detailed information about the universe’s formation, it remains the current research topic. Researchers divided more than 100 billion galaxies into ten different classes. It is not always possible to understand which class the galaxy types belong. However, Artificial Intelligence (AI) can be used for successful classification. There are studies on the automatic classification of galaxies into a small number of classes. As the number of classes increases, the success of the used methods… More >

  • Open Access

    ARTICLE

    Optimal Deep Transfer Learning Based Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Maged Mostafa Mahmoud4,5,6, Amer H. Asseri2,7, Hani Choudhry2,7, Haitham A. Yacoub8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3279-3295, 2023, DOI:10.32604/cmc.2023.031037 - 31 October 2022

    Abstract Colorectal carcinoma (CRC) is one such dispersed cancer globally and also prominent one in causing cancer-based death. Conventionally, pathologists execute CRC diagnosis through visible scrutinizing under the microscope the resected tissue samples, stained and fixed through Haematoxylin and Eosin (H&E). The advancement of graphical processing systems has resulted in high potentiality for deep learning (DL) techniques in interpretating visual anatomy from high resolution medical images. This study develops a slime mould algorithm with deep transfer learning enabled colorectal cancer detection and classification (SMADTL-CCDC) algorithm. The presented SMADTL-CCDC technique intends to appropriately recognize the occurrence of… More >

  • Open Access

    ARTICLE

    Effective Return Rate Prediction of Blockchain Financial Products Using Machine Learning

    K. Kalyani1, Velmurugan Subbiah Parvathy2, Hikmat A. M. Abdeljaber3, T. Satyanarayana Murthy4, Srijana Acharya5, Gyanendra Prasad Joshi6, Sung Won Kim7,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2303-2316, 2023, DOI:10.32604/cmc.2023.033162 - 22 September 2022

    Abstract In recent times, financial globalization has drastically increased in different ways to improve the quality of services with advanced resources. The successful applications of bitcoin Blockchain (BC) techniques enable the stockholders to worry about the return and risk of financial products. The stockholders focused on the prediction of return rate and risk rate of financial products. Therefore, an automatic return rate bitcoin prediction model becomes essential for BC financial products. The newly designed machine learning (ML) and deep learning (DL) approaches pave the way for return rate predictive method. This study introduces a novel Jellyfish… More >

  • Open Access

    ARTICLE

    Jellyfish Search Optimization with Deep Learning Driven Autism Spectrum Disorder Classification

    S. Rama Sree1, Inderjeet Kaur2, Alexey Tikhonov3, E. Laxmi Lydia4, Ahmed A. Thabit5, Zahraa H. Kareem6, Yousif Kerrar Yousif7, Ahmed Alkhayyat8,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2195-2209, 2023, DOI:10.32604/cmc.2023.032586 - 22 September 2022

    Abstract Autism spectrum disorder (ASD) is regarded as a neurological disorder well-defined by a specific set of problems associated with social skills, recurrent conduct, and communication. Identifying ASD as soon as possible is favourable due to prior identification of ASD permits prompt interferences in children with ASD. Recognition of ASD related to objective pathogenic mutation screening is the initial step against prior intervention and efficient treatment of children who were affected. Nowadays, healthcare and machine learning (ML) industries are combined for determining the existence of various diseases. This article devises a Jellyfish Search Optimization with Deep… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment

    Fadwa Alrowais1, Sami Althahabi2, Saud S. Alotaibi3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 687-700, 2023, DOI:10.32604/csse.2023.030188 - 16 August 2022

    Abstract Recently, Internet of Things (IoT) devices produces massive quantity of data from distinct sources that get transmitted over public networks. Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved. The development of automated tools for cyber threat detection and classification using machine learning (ML) and artificial intelligence (AI) tools become essential to accomplish security in the IoT environment. It is needed to minimize security issues related to IoT gadgets effectively. Therefore, this article introduces a new Mayfly optimization (MFO) with regularized extreme learning machine (RELM)… More >

  • Open Access

    ARTICLE

    A Novel Handcrafted with Deep Features Based Brain Tumor Diagnosis Model

    Abdul Rahaman Wahab Sait1,*, Mohamad Khairi Ishak2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2057-2070, 2023, DOI:10.32604/iasc.2023.029602 - 19 July 2022

    Abstract In healthcare sector, image classification is one of the crucial problems that impact the quality output from image processing domain. The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases. Magnetic Resonance Imaging (MRI) is one of the effective non-invasive strategies that generate a huge and distinct number of tissue contrasts in every imaging modality. This technique is commonly utilized by healthcare professionals for Brain Tumor (BT) diagnosis. With recent advancements in Machine Learning (ML) and Deep Learning (DL)… More >

  • Open Access

    ARTICLE

    Deep Learning with Optimal Hierarchical Spiking Neural Network for Medical Image Classification

    P. Immaculate Rexi Jenifer1,*, S. Kannan2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1081-1097, 2023, DOI:10.32604/csse.2023.026128 - 15 June 2022

    Abstract Medical image classification becomes a vital part of the design of computer aided diagnosis (CAD) models. The conventional CAD models are majorly dependent upon the shapes, colors, and/or textures that are problem oriented and exhibited complementary in medical images. The recently developed deep learning (DL) approaches pave an efficient method of constructing dedicated models for classification problems. But the maximum resolution of medical images and small datasets, DL models are facing the issues of increased computation cost. In this aspect, this paper presents a deep convolutional neural network with hierarchical spiking neural network (DCNN-HSNN) for… More >

  • Open Access

    ARTICLE

    Hybrid Convolutional Neural Network and Long Short-Term Memory Approach for Facial Expression Recognition

    M. N. Kavitha1,*, A. RajivKannan2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 689-704, 2023, DOI:10.32604/iasc.2023.025437 - 06 June 2022

    Abstract Facial Expression Recognition (FER) has been an important field of research for several decades. Extraction of emotional characteristics is crucial to FERs, but is complex to process as they have significant intra-class variances. Facial characteristics have not been completely explored in static pictures. Previous studies used Convolution Neural Networks (CNNs) based on transfer learning and hyperparameter optimizations for static facial emotional recognitions. Particle Swarm Optimizations (PSOs) have also been used for tuning hyperparameters. However, these methods achieve about 92 percent in terms of accuracy. The existing algorithms have issues with FER accuracy and precision. Hence,… More >

Displaying 21-30 on page 3 of 51. Per Page