Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    An RMD-YOLOv11 Approach for Typical Defect Detection of PV Modules

    Tao Geng1, Shuaibing Li1,*, Yunyun Yun1, Yongqiang Kang1, Hongwei Li2, Junmin Zhu2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071644 - 12 January 2026

    Abstract In order to address the challenges posed by complex background interference, high miss-detection rates of micro-scale defects, and limited model deployment efficiency in photovoltaic (PV) module defect detection, this paper proposes an efficient detection framework based on an improved YOLOv11 architecture. First, a Re-parameterized Convolution (RepConv) module is integrated into the backbone to enhance the model’s sensitivity to fine-grained defects—such as micro-cracks and hot spots—while maintaining high inference efficiency. Second, a Multi-Scale Feature Fusion Convolutional Block Attention Mechanism (MSFF-CBAM) is designed to guide the network toward critical defect regions by jointly modeling channel-wise and spatial… More >

  • Open Access

    ARTICLE

    Advanced Meta-Heuristic Optimization for Accurate Photovoltaic Model Parameterization: A High-Accuracy Estimation Using Spider Wasp Optimization

    Sarah M. Alhammad1, Diaa Salama AbdElminaam2,3,*, Asmaa Rizk Ibrahim4, Ahmed Taha2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069263 - 12 January 2026

    Abstract Accurate parameter extraction of photovoltaic (PV) models plays a critical role in enabling precise performance prediction, optimal system sizing, and effective operational control under diverse environmental conditions. While a wide range of metaheuristic optimisation techniques have been applied to this problem, many existing methods are hindered by slow convergence rates, susceptibility to premature stagnation, and reduced accuracy when applied to complex multi-diode PV configurations. These limitations can lead to suboptimal modelling, reducing the efficiency of PV system design and operation. In this work, we propose an enhanced hybrid optimisation approach, the modified Spider Wasp Optimization… More >

  • Open Access

    ARTICLE

    Automatic Pancreas Segmentation in CT Images Using EfficientNetV2 and Multi-Branch Structure

    Panru Liang1, Guojiang Xin1,*, Xiaolei Yi2, Hao Liang3, Changsong Ding1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2481-2504, 2025, DOI:10.32604/cmc.2025.060961 - 16 April 2025

    Abstract Automatic pancreas segmentation plays a pivotal role in assisting physicians with diagnosing pancreatic diseases, facilitating treatment evaluations, and designing surgical plans. Due to the pancreas’s tiny size, significant variability in shape and location, and low contrast with surrounding tissues, achieving high segmentation accuracy remains challenging. To improve segmentation precision, we propose a novel network utilizing EfficientNetV2 and multi-branch structures for automatically segmenting the pancreas from CT images. Firstly, an EfficientNetV2 encoder is employed to extract complex and multi-level features, enhancing the model’s ability to capture the pancreas’s intricate morphology. Then, a residual multi-branch dilated attention… More >

  • Open Access

    ARTICLE

    Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network

    Zhen-Yu Chen1, Feng-Chi Liu2, Xin Wang3, Cheng-Hsiung Lee1, Ching-Sheng Lin1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4287-4300, 2025, DOI:10.32604/cmc.2025.061661 - 06 March 2025

    Abstract In the domain of knowledge graph embedding, conventional approaches typically transform entities and relations into continuous vector spaces. However, parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations. In particular, resource-intensive embeddings often lead to increased computational costs, and may limit scalability and adaptability in practical environments, such as in low-resource settings or real-world applications. This paper explores an approach to knowledge graph representation learning that leverages small, reserved entities and relation sets for parameter-efficient embedding. We introduce a hierarchical attention network designed to refine More >

  • Open Access

    ARTICLE

    Solid Waste Management: A MADM Approach Using Fuzzy Parameterized Possibility Single-Valued Neutrosophic Hypersoft Expert Settings

    Tmader Alballa1, Muhammad Ihsan2, Atiqe Ur Rahman2, Noorah Ayed Alsorayea3, Hamiden Abd El-Wahed Khalifa3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 531-553, 2025, DOI:10.32604/cmes.2024.057440 - 17 December 2024

    Abstract The dramatic rise in the number of people living in cities has made many environmental and social problems worse. The search for a productive method for disposing of solid waste is the most notable of these problems. Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity. The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection. The characteristics (or sub-attributes) that… More >

  • Open Access

    ARTICLE

    RepBoTNet-CESA: An Alzheimer’s Disease Computer Aided Diagnosis Method Using Structural Reparameterization BoTNet and Cubic Embedding Self Attention

    Xiabin Zhang1,2, Zhongyi Hu1,2,*, Lei Xiao1,2, Hui Huang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2879-2905, 2024, DOI:10.32604/cmc.2024.048725 - 15 May 2024

    Abstract Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease (AD). Most studies predominantly employ Convolutional Neural Networks (CNNs), which focus solely on local features, thus encountering difficulties in handling global features. In contrast to natural images, Structural Magnetic Resonance Imaging (sMRI) images exhibit a higher number of channel dimensions. However, during the Position Embedding stage of Multi Head Self Attention (MHSA), the coded information related to the channel dimension is disregarded. To tackle these issues, we propose the RepBoTNet-CESA network, an advanced AD-aided diagnostic model that is capable… More >

  • Open Access

    ARTICLE

    Parameterization Transfer for a Planar Computational Domain in Isogeometric Analysis

    Jinlan Xu*, Shuxin Xiao, Gang Xu, Renshu Gu

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1957-1973, 2023, DOI:10.32604/cmes.2023.028665 - 26 June 2023

    Abstract In this paper, we propose a parameterization transfer algorithm for planar domains bounded by B-spline curves, where the shapes of the planar domains are similar. The domain geometries are considered to be similar if their simplified skeletons have the same structures. One domain we call source domain, and it is parameterized using multi-patch B-spline surfaces. The resulting parameterization is C1 continuous in the regular region and G1 continuous around singular points regardless of whether the parameterization of the source domain is C1/G1 continuous or not. In this algorithm, boundary control points of the source domain… More >

  • Open Access

    REVIEW

    Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape

    Zhiyuan Dai, Tian Li*, Weihua Zhang, Jiye Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1461-1489, 2023, DOI:10.32604/cmes.2023.028677 - 26 June 2023

    Abstract The aerodynamic optimization design of high-speed trains (HSTs) is crucial for energy conservation, environmental preservation, operational safety, and speeding up. This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs. First, the study explores the impact of train nose shape parameters on aerodynamic performance. The parameterization methods involved in the aerodynamic multiobjective optimization of HSTs are summarized and classified as shape-based and disturbance-based parameterization methods. Meanwhile, the advantages and limitations of each parameterization method, as well as the applicable scope, are briefly discussed. In addition, the NSGA-II algorithm,… More >

  • Open Access

    ARTICLE

    Feature Preserving Parameterization for Quadrilateral Mesh Generation Based on Ricci Flow and Cross Field

    Na Lei1, Ping Zhang2, Xiaopeng Zheng3,*, Yiming Zhu3, Zhongxuan Luo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 843-857, 2023, DOI:10.32604/cmes.2023.027296 - 23 April 2023

    Abstract We propose a new method to generate surface quadrilateral mesh by calculating a globally defined parameterization with feature constraints. In the field of quadrilateral generation with features, the cross field methods are well-known because of their superior performance in feature preservation. The methods based on metrics are popular due to their sound theoretical basis, especially the Ricci flow algorithm. The cross field methods’ major part, the Poisson equation, is challenging to solve in three dimensions directly. When it comes to cases with a large number of elements, the computational costs are expensive while the methods… More > Graphic Abstract

    Feature Preserving Parameterization for Quadrilateral Mesh Generation Based on Ricci Flow and Cross Field

  • Open Access

    ARTICLE

    AWSD: An Aircraft Wing Dataset Created by an Automatic Workflow for Data Mining in Geometric Processing

    Xiang Su1, Nan Li1,*, Yuedi Hu1, Haisheng Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2935-2956, 2023, DOI:10.32604/cmes.2023.026083 - 09 March 2023

    Abstract This paper introduces an aircraft wing simulation data set (AWSD) created by an automatic workflow based on creating models, meshing, simulating the wing flight flow field solution, and parameterizing solution results. AWSD is a flexible, independent wing collection of simulations with specific engineering requirements. The data set is applicable to handle computer geometry processing tasks. In contrast to the existing 3D model data set, there are some advantages the scale of this data set is not limited by the collection source, the data files have high quality, no defects, redundancy, and other problems, and the… More > Graphic Abstract

    AWSD: An Aircraft Wing Dataset Created by an Automatic Workflow for Data Mining in Geometric Processing

Displaying 1-10 on page 1 of 15. Per Page