Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations

    An Chen1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 917-939, 2020, DOI:10.32604/cmes.2020.09224 - 28 May 2020

    Abstract In this paper, two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered. These two models can be regarded as the generalization of the classical wave equation in two space dimensions. Combining with the Crank-Nicolson method in temporal direction, efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed, respectively. The corresponding stability and convergence analysis of the numerical methods are discussed. Numerical results are provided to verify the theoretical analysis. More >

  • Open Access

    ARTICLE

    A Nonlocal Operator Method for Partial Differential Equations with Application to Electromagnetic Waveguide Problem

    Timon Rabczuk1,2,*, Huilong Ren3, Xiaoying Zhuang4,5

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 31-55, 2019, DOI:10.32604/cmc.2019.04567

    Abstract A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations. Common differential operators as well as the variational forms are defined within the context of nonlocal operators. The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity, which is necessary for the eigenvalue analysis such as the waveguide problem. The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields. The governing equations are converted into nonlocal integral form. An hourglass energy functional is More >

  • Open Access

    ARTICLE

    A LARGE PARAMETER SPECTRAL PERTURBATION METHOD FOR NONLINEAR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS THAT MODELS BOUNDARY LAYER FLOW PROBLEMS

    T. M. Agbajea,b, S. S. Motsaa,* , S. Mondalc,† , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-13, 2017, DOI:10.5098/hmt.9.36

    Abstract In this work, we present a compliment of the spectral perturbation method (SPM) for solving nonlinear partial differential equations (PDEs) with applications in fluid flow problems. The (SPM) is a series expansion based approach that uses the Chebyshev spectral collocation method to solve the governing sequence of differential equation generated by the perturbation series approximation. Previously the SPM had the limitation of being used to solve problems with small parameters only. This current investigation seeks to improve the performance of the SPM by doing the series expansion about a large parameter. The new method namely… More >

  • Open Access

    ARTICLE

    Numerical Solutions of Fractional System of Partial Differential Equations By Haar Wavelets

    F. Bulut1,2, Ö. Oruç3, A. Esen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.4, pp. 263-284, 2015, DOI:10.3970/cmes.2015.108.263

    Abstract In this paper, time fractional one dimensional coupled KdV and coupled modified KdV equations are solved numerically by Haar wavelet method. Proposed method is new in the sense that it doesn’t use fractional order Haar operational matrices. In the proposed method L1 discretization formula is used for time discretization where fractional derivatives are Caputo derivative and spatial discretization is made by Haar wavelets. L2 and L error norms for various initial and boundary conditions are used for testing accuracy of the proposed method when exact solutions are known. Numerical results which produced by the proposed method for More >

  • Open Access

    ARTICLE

    Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations

    J.R. Zabadal1, B. Bodmann1, V. G. Ribeiro2, A. Silveira2, S. Silveira2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.4, pp. 215-227, 2014, DOI:10.3970/cmes.2014.103.215

    Abstract This work presents a new analytical method to transform exact solutions of linear diffusion equations into exact ones for nonlinear advection-diffusion models. The proposed formulation, based on Bäcklund transformations, is employed to obtain velocity fields for the unsteady two-dimensional Helmholtz equation, starting from analytical solutions of a heat conduction type model. More >

  • Open Access

    ARTICLE

    Space-time Discontinuous Galerkin Method Based on a New Generalized Flux Vector Splitting Method for Multi-dimensional Nonlinear Hyperbolic Systems

    P.A. Trapper1, P.Z. Bar-Yoseph2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 19-47, 2014, DOI:10.3970/cmes.2014.103.019

    Abstract The space-time discontinuous Galerkin method for multi-dimensional nonlinear hyperbolic systems is enhanced with a generalized technique for splitting a flux vector that is not limited to the homogeneity property of the flux. This technique, based on the flux’s characteristic decomposition, extends the scope of the method’s applicability to a wider range of problems, including elastodynamics. The method is used for numerical solution of a number of representative problems based on models of vibrating string and vibrating rod that involve the propagation of a sharp front through the solution domain. More >

  • Open Access

    ARTICLE

    A Wavelet Method for Solving Nonlinear Time-Dependent Partial Differential Equations

    Xiaojing Liu1, Jizeng Wang1,2, Youhe Zhou1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 225-238, 2013, DOI:10.32604/cmes.2013.094.225

    Abstract A wavelet method is proposed for solving a class of nonlinear timedependent partial differential equations. Following this method, the nonlinear equations are first transformed into a system of ordinary differential equations by using the modified wavelet Galerkin method recently developed by the authors. Then, the classical fourth-order explicit Runge-Kutta method is employed to solve the resulting system of ordinary differential equations. To justify the present method, the coupled viscous Burgers’ equations are solved as examples, results demonstrate that the proposed wavelet algorithm have a much better accuracy and efficiency than many existing numerical methods, and More >

  • Open Access

    ARTICLE

    Numerical solution of fractional partial differential equations using Haar wavelets

    Lifeng Wang1, Zhijun Meng1, Yunpeng Ma1, Zeyan Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.4, pp. 269-287, 2013, DOI:10.3970/cmes.2013.091.269

    Abstract In this paper, we present a computational method for solving a class of fractional partial differential equations which is based on Haar wavelets operational matrix of fractional order integration. We derive the Haar wavelets operational matrix of fractional order integration. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Finally, some examples are included to show the implementation and accuracy of the approach. More >

  • Open Access

    ARTICLE

    Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

    Mingxu Yi1, Yiming Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 229-244, 2012, DOI:10.3970/cmes.2012.088.229

    Abstract In this paper, Haar wavelet operational matrix method is proposed to solve a class of fractional partial differential equations. We derive the Haar wavelet operational matrix of fractional order integration. Meanwhile, the Haar wavelet operational matrix of fractional order differentiation is obtained. The operational matrix of fractional order differentiation is utilized to reduce the initial equation to a Sylvester equation. Some numerical examples are included to demonstrate the validity and applicability of the approach. More >

  • Open Access

    ARTICLE

    A Lie-Group Adaptive Method to Identify the Radiative Coefficients in Parabolic Partial Differential Equations

    Chein-Shan Liu1, Chih-Wen Chang2

    CMC-Computers, Materials & Continua, Vol.25, No.2, pp. 107-134, 2011, DOI:10.3970/cmc.2011.025.107

    Abstract We consider two inverse problems for estimating radiative coefficients α(x) and α(x, y), respectively, in Tt(x, t) = Txx(x, t)-α(x)T(x, t), and Tt(x, y, t) = Txx(x, y, t) + Tyy(x, y, t)-α(x, y)T(x, y, t), where a are assumed to be continuous functions of space variables. A Lie-group adaptive method is developed, which can be used to find a at the spatially discretized points, where we only utilize the initial condition and boundary conditions, such as those for a typical direct problem. This point is quite different from other methods, which need the overspecified final time data. Three-fold advantages can be gained More >

Displaying 11-20 on page 2 of 31. Per Page