Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (350)
  • Open Access

    ARTICLE

    Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data

    Xueying Huang*, Chun Yang, Chun Yuan, Fei Liu, Gador Canton, Jie Zheng§, Pamela K. Woodard§, Gregorio A. Sicard, Dalin Tang||

    Molecular & Cellular Biomechanics, Vol.6, No.2, pp. 121-134, 2009, DOI:10.3970/mcb.2009.006.121

    Abstract Image-based computational models for atherosclerotic plaques have been developed to perform mechanical analysis to quantify critical flow and stress/strain conditions related to plaque rupture which often leads directly to heart attack or stroke. An important modeling issue is how to determine zero stress state from in vivo plaque geometries. This paper presents a method to quantify human carotid artery axial and inner circumferential shrinkages by using patient-specific ex vivo and in vivo MRI images. A shrink-stretch process based on patient-specific in vivo plaque morphology and shrinkage data was introduced to shrink the in vivo geometry first to find the zero-stress… More >

  • Open Access

    ARTICLE

    Two-Layer Passive/Active Anisotropic FSI Models with Fiber Orientation: MRI-Based Patient-Specific Modeling of Right Ventricular Response to Pulmonary Valve Insertion Surgery

    Dalin Tang*, Chun Yang, Tal Geva‡,§, Pedro J. del Nido

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 159-176, 2007, DOI:10.3970/mcb.2007.004.159

    Abstract A single-layer isotropic patient-specific right/left ventricle and patch (RV/LV/Patch) combination model with fluid-structure interactions (FSI) was introduced in our previous papers to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. In this paper, an active anisotropic model with two-layer structure for ventricle wall and tissue fiber orientation was introduced to improve previous isotropic model for more accurate assessment of RV function and potential application in PVR surgery and patch design. A material-stiffening approach was used to model active heart contraction. The computational models were used to conduct ``virtual (computational)'' surgeries and test the hypothesis that… More >

  • Open Access

    ARTICLE

    Research on Arterial Stiffness Status in Type 2 Diabetic Patients Based on Pulse Waveform Characteristics

    Gaoyang Li1, Xiaorui Song2, Aike Qiao3, Makoto Ohta4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.2, pp. 143-155, 2018, DOI:10.31614/cmes.2018.04100

    Abstract For patients with type 2 diabetes, the evaluation of pulse waveform characteristics is helpful to understand changes in arterial stiffness. However, there is a lack of comprehensive analysis of pulse waveform parameters. Here, we aimed to investigate the changes in pulse waveform characteristics in patients with type 2 diabetes due to increased arterial stiffness. In this study, 25 patients with type 2 diabetes and 50 healthy subjects were selected based on their clinical history. Age, height, weight, blood pressure, and pulse pressure were collected as the subjects’ basic characteristics. The brachial-ankle pulse wave velocity (baPWV) was collected as an index… More >

  • Open Access

    ARTICLE

    A Fast-Fractional Flow Reserve Simulation Method in A Patient with Coronary Stenosis Based on Resistance Boundary Conditions

    Wenxin Wang1,2, Dalin Tang2, Boyan Mao1, Bao Li1, Xi Zhao3, Jian Liu4, Youjun Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 163-173, 2018, DOI: 10.31614/cmes.2018.04219

    Abstract Fractional flow reserve (FFR) is the gold standard to identify individual stenosis causing myocardial ischemia in catheter laboratory. The purpose of this study is to present a fast simulation method to estimate FFR value of a coronary artery, which can evaluate the performance of vascular stenosis, based on resistance boundary conditions. A patient-specific 3-dimensional (3D) model of the left coronary system with intermediate diameter stenosis was reconstructed based on the CTA images. The resistance boundary conditions used to simulate the coronary microcirculation were computed based on anatomical reconstruction of coronary 3D model. This study was performed by coupling the 3D… More >

  • Open Access

    ARTICLE

    Angle of Attack Between Blood Flow and Mitral Valve Leaflets in Hypertrophic Obstructive Cardiomyopathy: An In Vivo Multi-patient CT-based FSI Study

    Long Deng1, Xueying Huang2,3,*, Heng Zuo4, Yuan Zheng2, Chun Yang5, Yunhu Song1, Dalin Tang6

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 115-125, 2018, DOI: 10.31614/cmes.2018.04076

    Abstract The mechanisms of systolic anterior motion (SAM) of the mitral valve in hypertrophic obstructive cardiomyopathy (HOCM) remain unclear. To investigate the angle of attack between blood flow and mitral valve leaflets at pre-SAM time point, patient-specific CT-based computational models were constructed for 5 patients receiving septal myectomy surgery to obtain pre- and post-operative 2D vector flow mapping. The comparisons between pre- and post-operative angles of attack based on 2D vector flow mapping of 5 patients were performed. It was found that there was no statistically significant difference between pre- and post-operative angles of attack (61.1±t wao vs. 56.2±56.o, p=0.306, n=5).… More >

  • Open Access

    ARTICLE

    3D Echo-Based Patient-Specific Computational Left Ventricle Models to Quantify Material Properties and Stress/Strain Differences between Ventricles with and without Infarct

    Rui Fan1, Dalin Tang2,3, Jing Yao4, Chun Yang5, Di Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.6, pp. 491-508, 2014, DOI:10.3970/cmes.2014.099.491

    Abstract Identifying ventricle material properties and its infarct area after heart attack noninvasively is of great important in clinical applications. An echo-based computational modeling approach was proposed to investigate left ventricle (LV) mechanical properties and stress conditions using patient-specific data. Echo data was acquired from one healthy volunteer (male, age: 58) and a male patient (age: 60) who had an acute inferior myocardial infarction one week before echo image acquisition. Standard echocardiograms were obtained using an ultrasound machine (E9, GE Mechanical Systems, Milwaukee, Wisconsin) with a 3V probe and data were segmented for model construction. Finite element models were constructed to… More >

  • Open Access

    ARTICLE

    Patient-Specific Modeling in Urogynecology: A Meshfree Approach

    J.B. Alford1, D.C. Simkins1, R.A. Rembert1, L. Hoyte, MD2

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 129-149, 2014, DOI:10.3970/cmes.2014.098.129

    Abstract Mechanical deformation of tissues in the female pelvic floor is believed to be central to understanding a number of important aspects of women’s health, particularly pelvic floor dysfunction. A 2008 study of US women reported the prevalence of pelvic floor disorders in the 20 and 39 years range as 9.7% with the prevalence increasing with age until it reaches roughly 50% in the 80 and older age group [Nygaard, Barber, Burgio, and et al (2008)]. Clinical observation indicates a strong correlation between problems such as pelvic organ prolapse/urinary incontinence and vaginal childbirth. It is thought that childbirth parameters like fetal… More >

  • Open Access

    ARTICLE

    Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data

    Chun Yang1,2, Dalin Tang2, Satya Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.1, pp. 53-78, 2011, DOI:10.3970/cmes.2011.072.053

    Abstract Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing… More >

  • Open Access

    ARTICLE

    Three-Dimensional Carotid Plaque Progression Simulation Using Meshless Generalized Finite Difference Method Based on Multi-Year MRI Patient-Tracking Data

    Chun Yang1,2, Dalin Tang2,3 Satya Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 51-76, 2010, DOI:10.3970/cmes.2010.057.051

    Abstract Cardiovascular disease (CVD) is becoming the number one cause of death worldwide. Atherosclerotic plaque rupture and progression are closely related to most severe cardiovascular syndromes such as heart attack and stroke. Mechanisms governing plaque rupture and progression are not well understood. A computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data was introduced to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Participating patients were scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Vessel wall thickness (WT) changes… More >

  • Open Access

    ARTICLE

    Meshless Generalized Finite Difference Method and Human Carotid Atherosclerotic Plaque Progression Simulation Using Multi-Year MRI Patient-Tracking Data

    Chun Yang1, Dalin Tang2, Chun Yuan3, William Kerwin2, Fei Liu3, Gador Canton3, Thomas S. Hatsukami3,4, Satya Atluri5

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.2, pp. 95-108, 2008, DOI:10.3970/cmes.2008.028.095

    Abstract Atherosclerotic plaque rupture and progression have been the focus of intensive investigations in recent years. Plaque rupture is closely related to most severe cardiovascular syndromes such as heart attack and stroke. A computational procedure based on meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data was introduced to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Participating patients were scanned three times (T1,T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Vessel wall thickness (WT) changes were used as the measure for plaque progression. Since there was insufficient… More >

Displaying 341-350 on page 35 of 350. Per Page