Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (690)
  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF A STATIONARY SQUARE DUCT ROUGHENED BY V AND ᴧ-SHAPED RIBS

    Anand Shuklaa, Alok Chaubeb, Shailesh Guptac, Arvind Sirsathc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.14

    Abstract One of the traditional methods used to improve the efficiency of a gas turbine is to increases the inlet temperature; thereby increasing the power output and in turn, the efficiency. The internal cooling passages of blades are roughened by artificial roughness to improve the cooling performance. The present study investigates the convective heat transfer and friction factor (pressure drop) characteristics of a rib-roughened square duct. The test section of the duct is roughened on its top and bottom wall with V and ᴧ- shaped square ribs. In the study, the Reynolds number (Re) varied from 10,000 to 40,000, the relative… More >

  • Open Access

    ARTICLE

    PERFORMANCE ASSESSMENT AND EMPIRICAL CORRELATION IN A HEAT EXCHANGER SQUARE DUCT WITH DIAGONAL INSERTED GENERATORS

    Amnart Boonloi*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-12, 2014, DOI:10.5098/hmt.5.8

    Abstract A mathematical analysis of the heat transfer enhancement, thermal performance and flow configurations in a heat exchanger square duct with diagonal inserted plate vortex generators is presented. The 30o V–shaped baffles are modified and placed on the double sides of the thin plate or frame (with no plate) which inserted diagonally in the square duct. The effects of blockage ratio (b/H, BR), the pitch ratio (p/H, PR), flow direction (V–Downstream and V–Upstream) and configuration of inserting plate are investigated for Reynolds number based on the hydraulic diameter of the square duct, Dh, Re = 100 – 2000. The finite volume… More >

  • Open Access

    ARTICLE

    A Fully Adaptive Active Queue Management Method for Congestion Prevention at the Router Buffer

    Ali Alshahrani1, Ahmad Adel Abu-Shareha2,*, Qusai Y. Shambour2, Basil Al-Kasasbeh1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1679-1698, 2023, DOI:10.32604/cmc.2023.043545

    Abstract Active queue management (AQM) methods manage the queued packets at the router buffer, prevent buffer congestion, and stabilize the network performance. The bursty nature of the traffic passing by the network routers and the slake behavior of the existing AQM methods leads to unnecessary packet dropping. This paper proposes a fully adaptive active queue management (AAQM) method to maintain stable network performance, avoid congestion and packet loss, and eliminate unnecessary packet dropping. The proposed AAQM method is based on load and queue length indicators and uses an adaptive mechanism to adjust the dropping probability based on the buffer status. The… More >

  • Open Access

    ARTICLE

    Addressing the Issues and Developments Correlated with Envisaged 5G Mobile Technologies: Comprehensive Solutions

    Idrees Sarhan Kocher*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2205-2223, 2023, DOI:10.32604/cmc.2023.039392

    Abstract Fifth Generation (5G) communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries' objectives. It is anticipated that Envisaged 5G (E5G) mobile technology would be operational in certain developed countries by 2023. The Internet of Things (IoTs) will transform how humans live when combined with smart and integrated sensing devices, such as in-home sensing devices. Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology. High output, reduced latency, highly reliable, greater… More >

  • Open Access

    ARTICLE

    Modelling and Performance Analysis of Visible Light Communication System in Industrial Implementations

    Mohammed S. M. Gismalla1,2, Asrul I. Azmi1,2, Mohd R. Salim1,2, Farabi Iqbal1,2, Mohammad F. L. Abdullah3, Mosab Hamdan4,5, Muzaffar Hamzah4,*, Abu Sahmah M. Supa’at1,2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2189-2204, 2023, DOI:10.32604/cmc.2023.035250

    Abstract Visible light communication (VLC) has a paramount role in industrial implementations, especially for better energy efficiency, high speed-data rates, and low susceptibility to interference. However, since studies on VLC for industrial implementations are in scarcity, areas concerning illumination optimisation and communication performances demand further investigation. As such, this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances. The proposed model was evaluated based on various semi-angles at half power (SAAHP) and different height levels for several parameters, including received power, signal to noise ratio (SNR), and bit error rate… More >

  • Open Access

    ARTICLE

    Study on Rotational Effects of Modern Turbine Blade on Coolant Injecting Nozzle Position with Film Cooling and Vortex Composite Performance

    Jiefeng Wang1, Eddie Yin Kwee Ng2,*, Jianwu Li1, Yanhao Cao1, Yanan Huang1, Liang Li1,2,3,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 1-31, 2023, DOI:10.32604/fhmt.2023.045510

    Abstract The flow structure of the vortex cooling is asymmetrical compared to the traditional gas turbine leading edge cooling, such as the impingement cooling and the axial flow cooling. This asymmetrical property will affect the cooling performance in the blade leading edge, whereas such effects are not found in most of the studies on vortex cooling due to the neglect of the mainstream flow in the airfoil channel. This study involves the mainstream flow field and the rotational effects based on the profile of the GE E3 blade to reveal the mechanism of the asymmetrical flow structure effects. The nozzle position… More > Graphic Abstract

    Study on Rotational Effects of Modern Turbine Blade on Coolant Injecting Nozzle Position with Film Cooling and Vortex Composite Performance

  • Open Access

    ARTICLE

    Analysis of Profile and Unsteady Flow Performance of Variable Base Circle Radius Scroll Expander

    Junying Wei*, Gang Li, Chenrui Zhang, Wenwen Chang, Jidai Wang

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 199-214, 2023, DOI:10.32604/fhmt.2023.041793

    Abstract To study the complex internal flow field variation and output characteristics of a variable base radius scroll expander, this paper uses dynamic mesh techniques and computational fluid dynamics (CFD) methods to perform transient numerical simulations of a variable base radius scroll expander. Analysis of the flow field in the working cavity of a variable base radius scroll expander at different spindle angles and the effect of different profiles, speeds and pressures on the output characteristics of the scroll expander. The results of the study show that due to the periodic blocking of the inlet by the orbiting scroll, the fluid… More >

  • Open Access

    ARTICLE

    Numerical Investigation Thermal Performance of Solar Air Heater Using Different Angle V-Grooved of Corrugated Absorber Plate

    Ayad S. Abedalh*, Sohaib Hassan Mohammed

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 227-243, 2023, DOI:10.32604/fhmt.2023.041777

    Abstract Solar energy, a renewable resource, can be harnessed instead of fossil fuels to generate power and heat. One effective method for converting solar energy into heat is through a solar air heating (SAH) system. The theoretical investigation focused on the thermal performance of various V-groove angles on a corrugated absorber plate. The researchers maintained the exterior dimensions and constraints of the absorber plate while increasing its surface area by using a corrugated absorber surface. For the simulation, three different V-groove angles were employed: 45°, 30°, and 15°. The temperature and air flow rate into the system had been set at… More > Graphic Abstract

    Numerical Investigation Thermal Performance of Solar Air Heater Using Different Angle V-Grooved of Corrugated Absorber Plate

  • Open Access

    ARTICLE

    Numerical Assessments on Flow Topology and Heat Transfer Behavior in a Round Tube Inserted with Three Sets of V-Ribs

    Amnart Boonloi1, Withada Jedsadaratanachai2,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 81-106, 2023, DOI:10.32604/fhmt.2023.041547

    Abstract Simulation of fluid-flow topology and thermal behavior in a round tube heat exchanger (RTHX) installed by three V-rib sets is reported. The expected phenomena for the rib installation are the generated vortex flow, impinging flow, greater fluid blending and thermal boundary layer disturbance (TBLD). These phenomena are key causes of the augmentation of heat transfer potentiality and thermal efficiency of the RTHX. Effects of rib height (b1 = 0.05D – 0.25D and b2 = 0.05D – 0.25D), rib pitch or rib spacing (P = D, 1.5D and 2D) and fluid directions (positive x (+x flow direction) and negative x (–x… More > Graphic Abstract

    Numerical Assessments on Flow Topology and Heat Transfer Behavior in a Round Tube Inserted with Three Sets of V-Ribs

  • Open Access

    ARTICLE

    An Experimental Investigation of Aero-Foil-Shaped Pin Fin Arrays

    Mainak Bhaumik1, Anirban Sur2,*, Kavita Dhanawade3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 467-486, 2023, DOI:10.32604/fhmt.2023.044605

    Abstract Pin fins are widely used in applications where effective heat transfer is crucial. Their compact design, high surface area, and efficient heat transfer characteristics make them a practical choice for many thermal management applications. But for a high heat transfer rate and lightweight application, aerofoil shape pin fins are a good option. This work focuses on an experimental model analysis of pin-fins with aerofoil shapes. The results were evaluated between perforation, no perforation, inline, and staggered fin configurations. Aluminum is used to make the pin fins array. The experiment is carried out inside a wind tunnel, and the heat supply… More >

Displaying 51-60 on page 6 of 690. Per Page